NRMCA Concrete Carbon Calculator:

How to Reduce, Quantify, and Specify Carbon

Copyright 2010 AIA

MasterSpec Full Length

02/10

033000 - 1

SECTION 033000 - CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
- Α. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- SUMMARY 1.2
- Section includes cast-in-place concrete, including formwork, reinforcement, concrete materials, А mixture design, placement procedures, and finishes, for the following:
 - Footings.
 - Foundation walls
 - Slabs-on-grade.
 - Suspended slabs Concrete toppings

Building frame members.

Building walls

danisunt.

0 Gath And Divertion

-+-

.

--

Ing turks Manual

-

STRUCTURAL NOTE

S1010

STRUCTURAL NOTES STRUCTURAL DESIGN VALUE 10-00 -00 0-00 -00 Taxas at another including sink of party of 1 is provided in the second strength of the sec Televit Rep of shoet dat active is \$1.5 plications of specially 1:00 mm ate concrete floor I the bases put to respect to an approval states advected, ages nix process. ensioning reinforcement grade. Rolling and Aller ier operations. alle ncrete pavement and Data ment Salar Kar In JCTURAL OBSERVATION one or more of the und granulated blast------and a SYMBOLS Fits Portico Reconstruc NAL STREET, OR ADDREET, OR ADD

Restricted to the second sector water

I setting and some bells, duels, many and any other

Division 03 Section 033000 Cast-In-Place Concrete

Step #1:

Performance-Based Improvements

Step #2:

Carbon Accounting and Targets

Step #1 – Performance Based Improvements

<u>Goal:</u>

Prescription

Methods:

- Emphasize ACI 318 Exposure Classes
- > Alt testing for durability/design
 - Shrinkage, MOE, RCP, ASR
- Expand acceptable materials
- Extended strength development

<u>Results:</u>

Efficient and Optimized Mix Designs

Performance Specs

They allow for sustainable mix designs, but don't require it!

If you don't ask for sustainability, it's unlikely you'll get it.

Step #2 – Carbon Accounting and Targets

<u>Goal:</u>

Trigger the use of low carbon materials

Methods:

- Collect EPDs
- Establish a Carbon Budget

<u>Results:</u>

- Procurement of low carbon concrete
- Flexibility for the contractor and producer
- Buffer for as-built conditions

Specifications for Sustainability

		Dur	abilit	y Expa	osure	Specified	Max w/cm or	Nom. max	Air	Slump/	Chloride	Temp.	М
Member	Mix ID	F	S	W	С	Strength, f', psi	Performance Alternative	Aggregate, in.	Content	Slump Flow	Limit	Limits	
Footings													
Foundation Walls													
Slabs-on-grade													
Exterior slabs													
Suspended slabs (interior)													
Suspended slabs (exterior)													
Frame members													
Columns (interior)													
Columns (exterior)													
Walls (interior)													
Concrete toppings													

GWP

Collaborative carbon budget <u>vs.</u> GWP limit per mix class

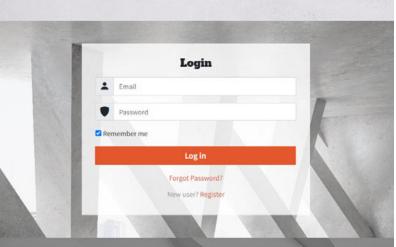
Preferred

Carbon Budget – Process

- 1. Concrete Volume Takeoff + Compressive Strengths
- 2. Identify Benchmark Impacts or Targets Per Mix
 - > NRMCA Regional Benchmarks, GSA, CalGreen, etc.

3. Identify Proposed Mix Design Impacts with Lower GWP

- > NRMCA Industry Wide EPD Mixes Varying Cementitious
- Product Specific EPD Mixes from a Concrete Producer
- Calculate Impact of Proposed Mix Proportions with NRMCA Tool
- 4. Calculate and Compare Total Impact for Benchmark and Proposed Scenarios
- 5. Carbon Budget: Proposed Low Carbon Concrete Scenario + Buffer
 - > List in specs as a cumulative and/or weighted average target
 - > See NRMCA Specification Guide



NRMCA Concrete Carbon Calculator

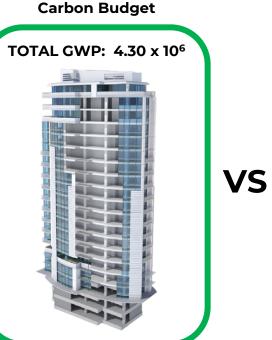
NRMCA's Carbon Tool can Simplify the Process

- 1. Automatically populates benchmark impacts
- 2. Calculates estimated carbon sequestration of the concrete through the life cycle of the structure
- 3. Generates a report documenting the anticipated reduction a low carbon concrete project can expect compared to the benchmark

Access at https://nrmca.climateearth.com/

NRMCA Concrete Carbon Calculator

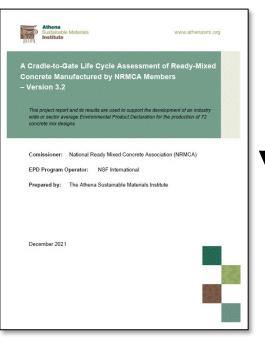
The NRMCA Concrete LCA and Project Budgeting Tool provides a simple and efficient way for ready-mix suppliers and concrete contractors to calculate the environmental impacts of concrete, assess the impact of lower carbon alternates, and demonstrate compliance with a pre-determined carbon budget on individual projects. Developers and designers can also use this tool to establish regionally appropriate carbon budgets for their projects.



Build with Strength is an initiative of NRMCA to educate the building and design communities and policymakers on the benefits and proper use of ready mixed concrete for building construction.

What is a Carbon Budget?

- Project-wide goal instead of GWP limits per class of concrete
- Allows the contractor and producer to adjust mixes as needed to fit material, environmental, and schedule demands
- Larger reductions in foundations and other vertical members, smaller reductions in high early and fastpaced members
- Flexibility prevents coordination issues
- Same overall carbon reduction



Establishing a Carbon Budget

Structural Takeoff

Benchmark Project

Proposed Project

Example Project

Structure:

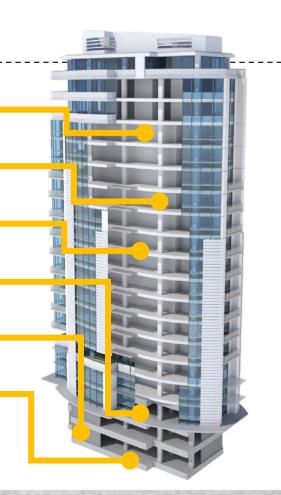
18-Story Residential Tower

Location: Boston, MA

<u>Concrete:</u> 6 Primary Classes

<u>**Material:**</u> Fly Ash and Slag Available Shear Walls: (yd³) x (GWP) = Impact

Columns: (yd³) x (GWP) = Impact

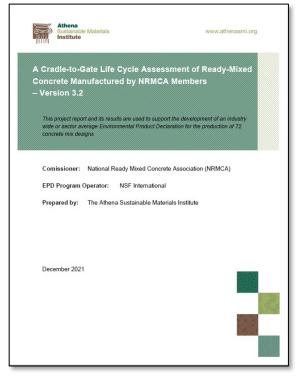

Floors 2-18: (yd³) x (GWP) = Impact

Floors B2-1: (yd³) x (GWP) = Impact

Basement Walls: (yd³) x (GWP) = Impact

Mat Foundation: (yd³) x (GWP) = Impact

TOTAL: Project Impact



1. Estimating Quantities and Properties

Concrete Element	Concrete Volume (yd³)	Benchmark Mixes (benchmark)*	Proposed Mixes (IW-EPD)*		
Shear Walls	7,630	6,000 psi	6,000 psi 30% slag, 20% fly ash		
Columns	366	8,000 psi	8,000 psi 40% fly ash		
Floors 2-18	4,533	5,000 psi	5,000 psi 30% slag		
Floors B2-1	1,067	5,000 psi	5,000 psi 40% fly ash		
Basement Walls	444	5,000 psi	5,000 psi 30% slag, 20% fly ash		
Foundation	3,844	6,000 psi	6,000 psi 40% slag, 30% fly ash		

*Should be augmented with local data, knowledge, capabilities

2. NRMCA Benchmark Mixes

Athena Sustainable Mat	terials Institute
D-1 : NRMCA	U.S. Nationa

Table A1-NRMCA National Production Dat	a Summary		
Number of Plants	489	·	La Cumputer
% Transit Mix Plants	81%		174
% Central Mix Plants	19%		The has
% Batch Waste	0.20%	i	Sumption 1 -1
	yd3	m3	1
Average Production	62,207	47,561	
Total Production	30,419,087	23,257,054	ing in the
Minimum Production	263	201	
Maximum Production	412,066	315,047	

|--|

								3000	4000	5000
Compressive Strength	psi	2500	3000	4000	5000	6000	8000	LW	LW	LW
Portland Cement	lbs	354	394	475	576	610	719	394	475	556
Fly Ash	lbs	62	69	83	101	107	126	69	83	97
Slag Cement	lbs	17	19	23	28	30	35	19	23	27
Mixing Water	gal	305	305	305	315	341	341	308	308	308
Crushed Coarse Aggregate	lbs	1,126	1,115	1,083	1,029	1,061	1,018	0	0	0
Natural Coarse Aggregate	lbs	553	547	531	505	521	499	0	0	0
Crushed Fine Aggregate	lbs	169	167	162	154	159	152	161	149	136
Natural Fine Aggregate	lbs	1,282	1,270	1,233	1,171	1,208	1,159	1,225	1,130	1,035
Man.Lightweight Aggregate	lbs	0	0	0	0	0	0	980	990	1,000
Air %	%	6%	6%	6%	6%	6%	0	6%	6%	2%
Air Entraining Admixture	oz	1	1	1	1	1	1	1	1	0
Plasticizer & Superplasticizer	02	3	3	3	7	3	3	3	7	7
Set Accelerator	oz	25	20	15	10	25	20	15	10	10
Total Weight	lbs	3,867	3,886	3,895	3,878	4,037	4,049	2,178	2,168	2,159

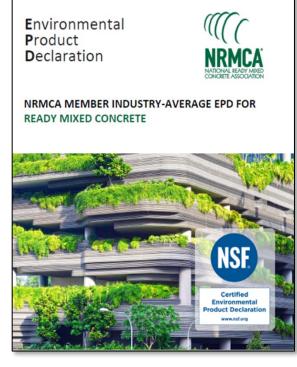
NRMCA Industry Wide LCA Project Report - V 3.2

Ab	tona Sustainable Mat	toriala Institute								
- LL 51. M	RMCA U.S. Nation	JICO Barr	the fear cub							
Srength	ps #25 days	2.500	3.000	4.000	5.000	6.000	8.000	300GLW	4000LW	SOCOLW
	onv Impact Indicato								_	_
SWP	kg CO2e	203.24	222.44	261.83	310.99	328.03	3\$0.56	397.94	438.78	479.93
009	log CFC11e	5.635.06	6.11E-06	7.075-06	8.265-06	8,71E-06	1.00F-05	1.465-05	1.575-05	1.67E-05
AP	kg SOZe	0.72	0.77	0.88	1.01	1.07	1.21	1.98	2.10	2.21
EP	ka No	0.28	0.30	0.35	0.40	0.43	0.49	0.71	0.76	0.81
SPP	kg GBe	15.48	16.56	18.77	21.44	22.58	25.52	25.53	25.90	31.07
ADPf	MJ, NCV	1.241.81	1,342.56	1.548.62	1.804.84	1.902.93	2,178,87	2,895.87	3,116.47	3.341.78
ADPe	kg Sbe	2.001-04	2.132-04	2.375-04	2.665-04	2.802-04	3.138-04	2.612-04	2.862-04	3.125-04
FFD	MI Surplus	106.27	112.05	123.82	138.65	145.07	150.97	203.36	215.98	229.30
Jse of Primary										-
IP16	MJ, NOV	58.70	63.92	74.63	\$8.C3	92.84	107.17	274.92	287.82	300.96
RPRM	MJ, NCV	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NRPRE	MJ, NCV	1.443.65	1.551.32	1,771.32	2,044.67	2,150.27	2.444.86	3.248.27	3,484.49	3,725.75
NIPRA	MJ, NCV	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Secondary Ma	aterial, Secondary F	Fuel and Recov	vered Energy				_			
SM	٢٤	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
RSF	MJ, NCV	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NRSF	MJ, NCV	75.35	83.79	101.15	122.62	129.91	153.03	83.94	101.13	118.32
RE	MJ, NOV	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
standatory In-	ventory Parameters	(s								
FW	m3	2.00	2.18	2.54	2.98	3.15	3.63	2.39	2.75	3.11
COE	kg CO2e	77.85	85.58	104.51	126.70	134.23	158.12	85.73	104.49	122.26
ndicators Der	scribing Waste									
HWD	×g	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
NHWD	ke	7.37	7.37	7.37	7.37	7.37	7.37	7.37	7.37	7.37
HLBW	m3	1.79E-08	1.77E-08	1.745-08	1.685-08	1.715-08	1.67E-08	5.10E-08	5.128-08	5.13E-06
LIRW	m3	2.43E-07	2.41E-07	2.355-07	2.26E-07	2.32E-07	2.24E-07	1.705-06	1.716-08	1.728-00
CRU	kg	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5/8	kg	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MER	۲g	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
55	MJ, NCV	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

61

NRMCA Industry Average LCA Project Report - Version 3

Download at https://www.nrmca.org/sustainability


2. NRMCA Benchmark Mixes

Shear Walls			alls 7,630			6,000 psi			6,000 psi 30% slag, 20% fly ash			
Institute	· · · ·		Table A1-NRMCA Number of Plants % Transit Mix Plants	National Production Data Summary	459 8155			RMCA U.S. National LCA Results (per co ps: £25 days 2,500 3,000	ubic yard) 4.000 5,000 4.000	8,000 3000LW 4000LW		
Results Tab	le E2-Eastern LCA I	Results (per o	ubic yard)	-	-				-	-		
Strength	psi @28 days	2,500	3,000	4,000	5,000	6,000	8,000	3000LW	4000LW	5000LW		
Core Mandat	ory Impact Indicator											
GWP	kg CO2e	183.29	201.48	240.22	289.03	305.26	360.51	395.35	437.90	480.10		
ODP	kg CFC11e	5.91E-06	6.36E-06	7.32E-06	8.52E-06	8.96E-06	1.03E-05	1.47E-05	1.58E-05	1.69E-05		
AP	kg SO2e	0.67	0.71	0.81	0.93	0.98	1.12	2.10	2.22	2.33		
EP	kg Ne	0.24	0.26	0.30	0.36	0.37	0.44	0.69	0.74	0.79		
SFP	kg O3e	14.31	15.21	17.18	19.61	20.57	23.34	29.65	31.81	33.89		
ADPf	MJ, NCV	400.61	412.16	442.07	482.50	503.70	548.75	2,225.23	2,290.96	2,344.41		
ADPe	kg Sbe	1.28E-04	1.30E-04	1.36E-04	1.42E-04	1.48E-04	1.55E-04	1.71E-04	1.79E-04	1.87E-04		

Note: This step is automated when using NRMCA's Concrete Carbon Calculator

2. NRMCA Benchmark Mixes

Concrete Element	Concrete Volume (yd ³)	Benchmark Mixes GWP (Eastern Region)	Proposed Mixes GWP (IW-EPD)*
Shear Walls	7,630	6,000 psi 305	
Columns	366	8,000 psi 361	
Floors 2-18	4,533	5,000 psi 289	
Floors B2-1	1,067	5,000 psi 289	
Basement Walls	444	5,000 psi 289	
Foundation	3,844	6,000 psi 305	

Environmental Product Declaration

Specified Compressive	SCM Range (%)	Product Nam
Strangth Range		
	0-19% Fly Ash and/or Slag	2500-00-FA/S
	20-25% Fly Ash	2500-20-FA
	30-39% Fly Ash	2500-30-FA
0-2,500 psi	40-49% Fly Ash	2500-40-FA
(0-17.24 MPa)	30-49% Slag	2500-30-SL
	40-39% Slag	2500-40-SL
	≥ 90% Slag	2500-50-SL
	2 20% Fly Ash and 2 30% Slag	2500-50-FA/S
	0-19% Fly Ash and/or Slag	3000-00-FA/S
	20-29% Fly Ash	3000-20-FA
2501-3000 osi	30-39% Fly Ash	3000-30-FA
	40-49% Fly Ash	3000-40-FA
(17.25-20.68 MPa)	30-39% Slag	3000-30-SL
MI-9)	40-49% Slag	3000-40-5L
	a SC% Slag	3000-50-SL
	≥ 20% Fly Ash and ≥ 30% Slag	3000-50-FA/S
	0-19% Fly Ash and/or Slag	4000-00-FA/S
	20-29% Fly Ash	4000-20-FA
3001-4000 psi	30-39% Fly Ash	4000-20-FA
(20.59-27.58	40-49% Fly Ash	4000-40-FA
MPa)	30-39% Slag	4000-30-SL
	40-49% Slag	4000-40-SL
	≥ 50% Slag	4000-50-SL
	≥ 20% Fly Ash and ≥ 30% Slag	4000-50-FA/S
	0-19% Fly Ash and/or Slag	5000-00-FA/S
	20-29% Fly Ash	5000-20-FA
	30-39% Fly Ash	5000-30-FA
	40-49% Ply Ash	5000-40-FA
	30-39% Slag	5000-30-5L
MINE	40-49% Slag	5000-40-SL
	> 50% Sing	5000-50-SL
4001-5000 ps (27.59-34.47 M ⁷ e)	≥ 20% Fly Ash and ≥ 30% Slag	5000-50-FA/S
	C-19% Fly Ash and/or Slag	6000-00-FA/S
	20-29% Fly Ash	6000-20-FA
5001-6000 psi	30-39% Fly Ash	6000-30-FA
(34.48-41.37	40-49% Fly Ash	6000-40-FA
(04.40-41.37 MPa)	30-39% Slag	6000-30-SL
(MEa)	40-49% Slag	6000-40-SL
	2 50% Slag	6000-50-5L
	2 20% Fly Ash and 2 30% Slag	6000-50-FA/S
	C-19% Fly Ash and/or Slag	8000-CO-FA/S
	20-29% Fly Ash	8000-20-FA
	30-39% Fly Ash	8000-30-FA
6001-8000 pci (41.38-55.16	40-49% Fly Ash	8000-40-FA
(41.38-55.16 MPa)	30-39% Slag	8000-30-SL
ere- 8/	40-49% Slag	8000-40-SL
	≥ 50% Slag	8000-50-SL
	≥ 20% Fly Ash and ≥ 30% Slag	8000-50-EA/S

How to Use This Table NIWA: members participanting in this project may use labe 1 to date compliance with this FD. Automatic terraget and project will leavy not have the predice specific compressive terraget and proportions listed in this FD: One can use Table 1 is a classify exponse product to match end of the produce listed in the FD estimates of the produce lis

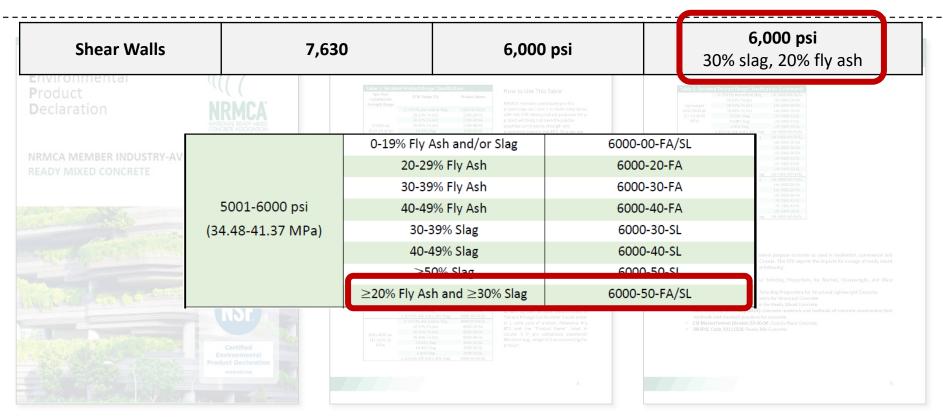
sementitious materials ounlity) Stop 2: In Table 1 identify the specified compressive strength range that captures the specified compressive strength of the proposed product Kolum 1).

Step 3: Within this case/field compressive strength range rouge learning the SOM percentage of the proposed product (Column 2). For terrary miss (miss containing Porthal comment, 14 years and sing percentage) table the largest percentage of dither fly wash or sing comment use. For example, 11 the proposed mithes 15/6/1 years and 40% sing cement, use the 40-6% sing range.

Step 4: In that row, move to Column 3 to Identify the product name that can be used to look up the life cycle impacts listed in Tables 6 through 11 for alber 1 cubic mater or 1 cubic yard of product. Reference this EPD and the "Product Name" listed in column 3 in any compliance statement/ literature (e.g., weigh bill) accompanying the modult.

Δ

Environmental Product Declaration


	0-19% Fly Ash and/or Slag	104 2000 00 56/5		
	20-23% Fly Ash	1W-3000-20-FA		
Lightweight	30-35% Fly Ash	LW-3000-30-FA		
2501-3000 pti	40-49% Fly Ash	LW-3000-40-FA		
(17.25-20.68	30-39% Slag	UW-3000-30-SL		
MPa)	40-49% Slag	UW-3000-40-5L		
	≥ 50% Slag	LW-3000-50-SL		
	2 20% Fly Ash and 2 30% Slag	LW-3000-50-FA/SI		
	0-19% Fly Ash and/or Slag	LW-4000-00-FA/SI		
Lightweight 3001-4000 psi	20-28% Fly Ash	LW-4000-20-FA		
	30-39% Fly Ash	LW-4000-30-FA		
	40-49% Fly Ash	LW-4000-40-FA		
(20.69-27.58 MPa)	30-39% Slag	LW-4000-30-SL		
(Mira)	40-49% Slag	LW-4000-40-SL		
	≥ 50%. Slag	UW-4000-50-SL		
	2 20% Fly Ash and 2 30% Slag	LW-4000-50-FA/SI		
	0-19% Fly Ash and/or Slag	LW-5000-00-FA/SI		
	20-25% Phy Ash	LW-5000-20-FA		
Lightweight	30-39% Fly Ash	LW-5000-30-FA		
4001-5000 psi	40-49% Fly Ash	LW-5000-40-FA		
(27.59-34.47	30 39% Slag	LW-5000-30 SL		
MPa)	40-49% Slag	UW-5000-40-SL		
	≥ 50% Slag	LW-5000-50-SL		
	≥ 20% Hy Ash and ≥ 30% Slag	LW-5000-50-FA/SI		

Product Standard

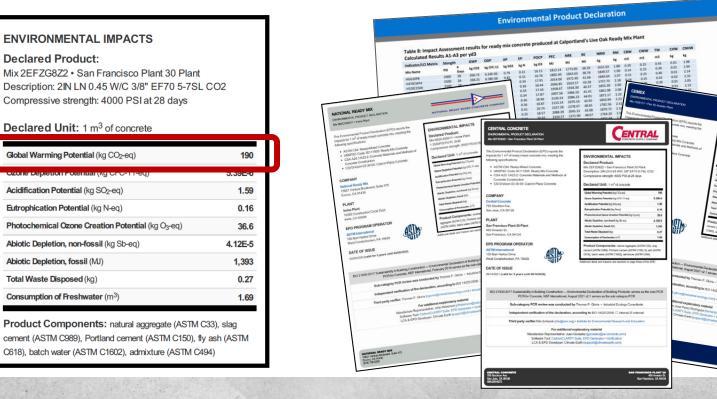
Products covered by this EPD satisfy general purpose concrete as used in residential, commercial and public works applications in the US and Canada. This EPD reports the impacts for a range of ready mixed concrete products in accordance with the following:

- ACI 211.1: Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete
- ACI 211.2: Standard Practice for Selecting Proportions for Structural Lightweight Concrete
- ACI 318: Building Code Requirements for Structural Concrete
- ASTM C94: Standard Specification for Ready Mixed Concrete
- C5A A23.1-09/A23.2-09 (R2014): Concrete materials and methods of concrete construction/test methods and standard practices for concrete
- CSI MasterFormat Division 03-30-00: Cast-in-Place Concrete
- UNSPSC Code 30111500: Ready Mix Concrete

Download at https://www.nrmca.org/sustainability

oduct	aduct Softwire and						stituation (Continued) (W-3000-00-74/5) (W-3000-00-74 (W-3000-30-74 (W-3000-10-30 (W-3000-10-30 (W-3000-10-30				
Table 10	o. Summary Resul	ts (A1-A3): 5001	-6000 psi (34.5	-41.4 MPa) RN	/IC product m	ix design, per	cubic yard				
		Minimum	Maximum	5001-6000- 00-FA/SL	5001-6000- 20-FA	5001-6000- 30-FA	5001-6000- 40-FA	5001-6000- 30-SL	5001-6000- 40-SL	5001-6000- 50-SL	5001-6000- 50-FA/SL
GWP	tory Impact Indicator	231.47	377.44	377.44	322.63	293.01	261.73	290.83	261.97	233.10	231.47
ODP	kg CFC11e	6.50E-06	9.71E-06	9.16E-06	7.90E-06	7.22E-06	6.50E-06	9.49E-06	9.60E-06	9.71E-06	0.24E-00
AP	kg SO2e	0.81	1.10	1.07	0.95	0.88	0.81	1.08	1.09	1.10	0.242-00
EP	kg Ne	0.30	0.45	0.45	0.39	0.35	0.32	0.37	0.34	0.32	0.30
SFP	kg O3e	17.76	23.30	22.81	20.42	19.13	17.76	23.10	23.20	23.30	20.73
ADPf	MJ, NCV	503.28	575.31	575.31	541.31	522.84	503.28	550.69	542.48	534.27	515.21
ADPe	kg Sbe	1.21E-04	1.50E-04	1.50E-04	1.36E-04	1.29E-04	1.21E-04	1.36E-04	1.31E-04	1.27E-04	1.22E-04
	Margares.	Certified Environmental Product Declaratio			30-39% Fly Ash 8000-30 30-39% Fly Ash 8000-30 30-39% Slag 8000-40 30-39% Slag 8000-40 25-50% Slag 8000-40 250% Slag 8000-40 260% Slag 8000-50 % Fly Ash and 2 30% Slag 8000-50				UNSPSC Code 30111500: Ready	Mix Concrete	

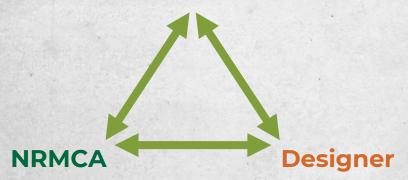
Download at https://www.nrmca.org/sustainability

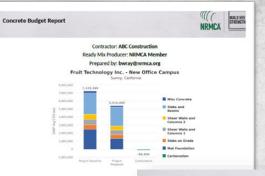

Concrete Element	Concrete Volume (yd ³)	Benchmark Mixes GWP (Eastern Region)	Proposed Mixes GWP (IW-EPD)*
Shear Walls	7,630	6,000 psi 305	30% slag, 20% fly ash 232
Columns	366	8,000 psi 361	40% fly ash 303
Floors 2-18	4,533	5,000 psi 289	30% slag 277
Floors B2-1	1,067	5,000 psi 289	40% fly ash 249
Basement Walls	444	5,000 psi 289	30% slag, 20% fly ash 220
Foundation	3,844	6,000 psi 305	40% slag, 30% fly ash 166**

* Should be augmented with local data, knowledge, capabilities

** Use NRMCA Tool to input mix proportions which uses Life Cycle Inventory (LCI) data to estimate impact

3. Alternate: Product Specific EPD Mixes


If available, can use for specific mixes from a specific manufacturer and location


Cemex

NRMCA Concrete Carbon Calculator

Producer

fe GW9 AgCCOB Mint Application Quantity MOX OWP MX 165.1 8,000 6.000 305.4 Slabs on Grade 2.400 4,000 247.3 110 257 2,200 306.4 and Coherry 6.000 1,800 8,000 349 275 8,500 6,000 306.4 275 Bears 1,000 4,000 247.3 185

This report was generated using the NRMCA's Concrete Carbon Cal this analysis indicate that an estimated -25.11 % reduction in embc scope on Fruit Technology Inc. - New Office Campus*. The baselin NRMCA v3.2 Pacific SW.

*This study includes the following life cycle stages.

NRMCA Concrete Carbon Calculator

The NRMCA Concrete LCA and Project Budgeting Tool provides a simple and efficient way for ready-mix suppliers and concrete contractors to calculate the environmental impacts of concrete, assess the impact of lower carbon alternates and demonstrate compliance with a pre-determined carbon budget on individual projects. Developers and designers an also use this tool to establish regionally appropriate carbon budgets for their projects.

Build with Strength is an initiative of NRMCA to educate the building and design communities and policymakers on the benefits and proper use of ready mixed concrete for building construction.

Project Data	Online Report
	,
	•
	Project type *

Project Address

_ Street	City *	State *	_ Zip Code *
123 Main Street	Boston	Massachusetts (MA) 👻	02114

Project Complementary Information

Contractor name	Ready Mix Producer	Plant Name
ABC Contracting	NRMCA Producer	Downtown Boston

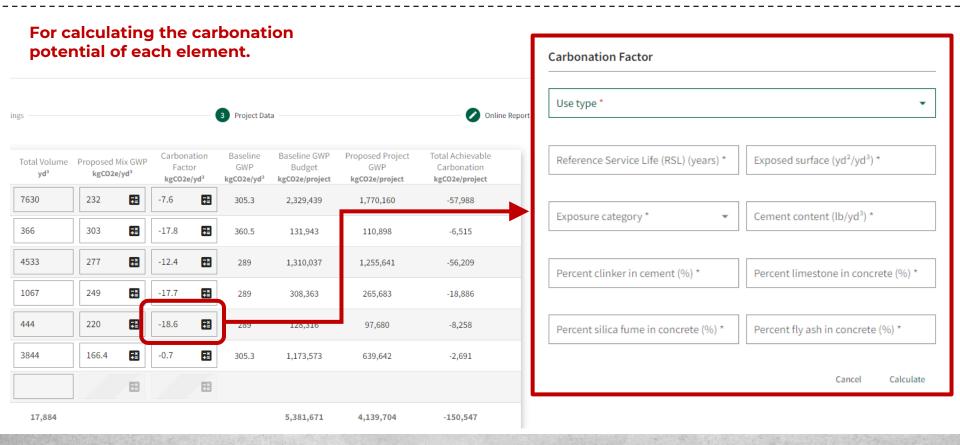
Start New Project		 NRMCA Benchmarks v3.2 National
Basic Information	2 Project Settings	 8 Regions GSA (General Services Administration)
Basic Settings		 City of Portland CLF Baseline (Carbon Leadership Forum)
Unit of Measure System * imperial	Total Project Area * 500000	 CalGreen (In-Progress)
		More to be added in the future
Carbon Budget Source Settings		_ Source for baseline *

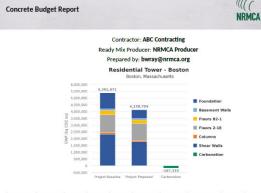
Reset Cancel

Basic Infor	mation			Project Set	tings			3 Project Dat	а		Online Repo
	Mix ID	Strength PSI	Mix Type	Application	Total Volume yd ³	Proposed Mix GWP kgCO2e/yd ³	Carbonation Factor kgCO2e/yd³	Baseline GWP kgCO2e/yd ³	Baseline GWP Budget kgCO2e/project	Proposed Project GWP kgC02e/project	Total Achievable Carbonation kgCO2e/project
	1	6000	Norm 👻	Shear Walls	7630	232	-7.6	305.3	2,329,439	1,770,160	-57,988
1	2	8000	Norm 🔻	Columns	366	303	-17.8	360.5	131,943	110,898	-6,515
	3	5000	Norm 🔻	Floors 2-18	4533	277	-12.4	289	1,310,037	1,255,641	-56,209
	4	5000	Norm 🔻	Floors B2-1	1067	249	-17.7	289	308,363	265,683	-18,886
T	5	5000	Norm 💌	Basement V	444	220	-18.6	289	128,316	97,680	-8,258
	6	6000	Norm 🔻	Foundation	3844	166.4	-0.7	305.3	1,173,573	639,642	-2,691
						B	B				

For calculating impact of a proposed 70% SCM replacement in foundations

Project Sett	ings			(3 Project D
Application	Total Volume yd³	Proposed Mix GWP kgCO2e/yd ³	Carbona Facto kgC02e /	r	Baseline GWP kgC02e/yd
Shear Walls	7630	232	-7.6	* *	305.3
Columns	366	303	-17.8	Ŧ	360.5
Floors 2-18	4533	277	-12.4	₽	289
Floors B2-1	1067	249	-17.7	₽ ≚	289
Basement V	444	220	-18.6	₽	289
Foundation	3844	166.4	0.7	Ŧ	305.3
		Ţ,			
TOTALS	17,884				


Proposed Mix GWP for 'Mat Foundation'


Important information

This result is NOT an EPD. This GWP was calculated using the same LCI data sources as prescribed in Table A1 of the PCR for Concrete, NSF International, August 2021 v2.1. A3 is assumed to be 9.04 kg CO2eq/m3 per NRMCA's Benchmark Report v3.2. This GWP is strictly an estimate and is based on industry averages, regional data, and average transportation impacts and should be used for estimation purposes only. For more accurate results, it is recommended that a Type III Third-Party Verified Product Specific EPD be developed.

For a more accurate plant specific estimate, use your EPD tool provider's EPD estimator.

	Material			Quantity per yo	3	UoM
Î	Batch Water		*	32	✓	GAL
	Portland Limestone Cement (Type IL)/ASTM C595 - Domest	ic	*	282	✓	LB
I	Fly Ash		*	112	~	LB
	Slag Cement/ASTM C989 - Imported		•	170	~	LB
Î	Crushed Coarse Aggregate/ Crushed Fine Aggregate		•	1650	~	LB
ĩ	Natural Fine Aggregate		•	1350	~	LB
	Plasticizer and Superplasticizer		*	24	✓	FL.OZ
	c	ancel	Downloa	d Mix Design File	C	Calculate

Mix ID	Application	Concrete Quantity (yd*)	fc (PSI)	Raseline GWP (kgCO2e/ yd ⁹)	Proposed MEX GWP (ligC02e/yd*)	Total Project Baseline GWP (ligCO2e/ project)	Total Project Proposed GWP (ligCO2e/project)	Difference from Baseline	Carbonation (kgCO2e/project)
1	Shear Walls	7,630	6,000	305.3	232	2,329,439	1,770,160	-24.01 %	-74,774
2	Columns	366	8,000	360.5	303	131,943	110,898	-15.95 %	-6,514.8
3	Floors 2-18	4,533	5,000	289	277	1,310,037	1,255,641	-4,15 %	-56,209.2
4	Floors 82-1	1,067	5,000	289	249	308,363	265,683	-13.84%	-18,885.9
5	Basement Walls	444	5,000	289	220	128,316	97,680	-23.88 %	-8,258.4
6	Foundation	3,844	6,000	305.3	166.4	1,173,573.2	639,641.6	-45.50%	-2,690.8
						5,381,671.2	4,139,703.6	-23.08 %	-167,333.1

This report was generated using the NRMCA's Concrete Carbon Calculator, powered by Climate Earth. The results of this analysis indicate that an estimated .23.08 % reduction in embodied carbon could be achieved for the concrete scope on Residential Tower - Boston*. The baseline used to calculate this reduction is based on NRMCA v3.2 Eastern.

*This study includes the following life cycle stages.

Concrete Budget Report

BUILD WITH

Recommended Specification Additions:

Section 033000 - CAST-IN-PLACE CONCRETE

Part 1 - GENERAL

1. - Related Documents

- A. The basis for designing concrete mixtures and demonstrating compliance with carbon budget targets shall be in accordance with:
 - National Ready Mixed Concrete Association (NRMCA) Cradle-to-Gate Life Cycle Assessment of Ready-Mixed Concrete Manufactured by NRMCA Members – Version 3 (or later).

 National Ready Mixed Concrete Association, NRMCA Member Industry Average EPD for Ready Mixed Concrete – Version 3 (or later).

2. - Summary

- A. Embodied Carbon Footprint Goals
 - This project has a goal of reducing the embodied carbon footprint relative to a benchmark or typical project by XX %. To accomplish this goal, the target carbon footprint reduction for concrete is 20%. below the benchmark established in the NBMCA Cradie-to-Gate Life Cycle Assessment of Ready-Mixed

Concrete Version 3 (or later). Specific targets for Global Warning Potential (GWP) are provided in Section 2, CONCRETE MIXTURES. It shall be permitted to propose innovative products and manufacturing processes for approval by the Engineer of Record, Proposed alternatives shall meet all performance criteria for strength, durability, and constructability, and achieve the re-uired reduction in carbon footprint.

1.5 - Action Submittals

- A. Embodied Carbon Footprint Submittals
 - Plant specific Environmental Product Declaration (EPD) for each concrete mixture proposed for the project accompanying each concrete mixture submittal
 - a. It shall be permitted to substitute plant-specific EPDs with those listed in NRMCA Member Industry. Average. EPD for Ready Mixed Concrete If the proposed mixtures are similar to those listed and the concrete producer participated in providing data for the NRMCA Cradie-to-Gate Life Cycle Assessment of Ready-Mixed Concrete.
 - A calculation showing that the Global Warming Potential (GWP) of all the concrete supplied for the project shall be lower than the GWP target set in Section 2.

BUILD WITH STRENGTH NRMCA

Concrete Budget Report

NPMCA	BUILD INTE STRENGTH
MININGA	KARDWINE TRANSPORT

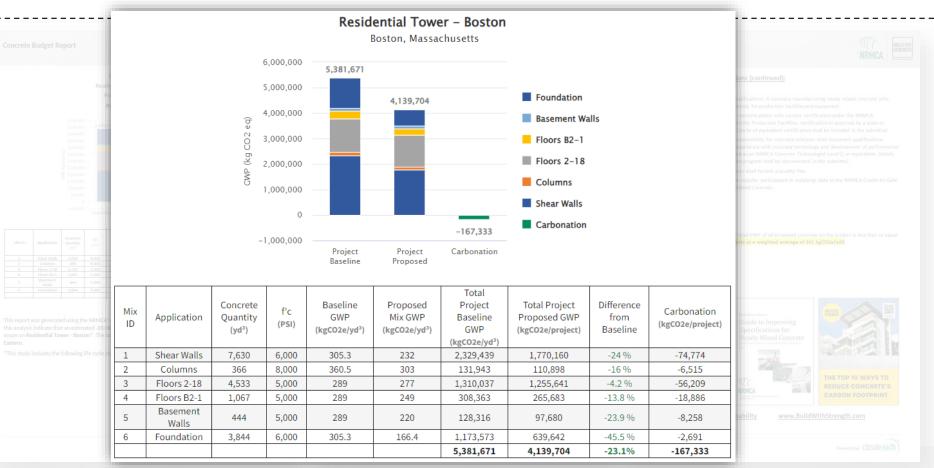
Recommended Specification Additions (continued):

1.7 - Quality Assurance

- A. Ready Mixed Concrete Manufacturer Qualifications: A company manufacturing ready mixed concrete who complies with ASTM C94/C94M requirements for production facilities and equipment
 - Concrete shall be supplied from concrete plants with current certification under the NRMCA Certification of Ready Mixed Concrete Production Facilities, certification or approval by a state or highway agency or equivalent. Criteria of equivalent certification shall be included in the submittal.
 - 2. Quality Control personnel with responsibility for concrete mixtures shall document qualifications demonstrating knowledge and experience with concrete technology and development of performancebased concrete mixtures, certified as an NRMCA Concrete Technologist Level 2, or equivalent. Details covered in equivalent certification program shall be documented in the submittal.
 - 3. When requested, the manufacturer shall furnish a Quality Plan
 - Documentation that the concrete supplier participated in supplying data to the NRMCA Cradle-to-Gate Life Cycle Assessment of Ready-Mixed Concrete.

Part 2 - PRODUCTS

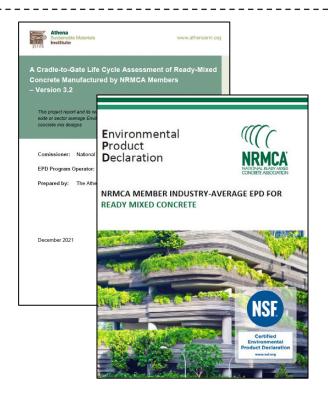
2.11 - Concrete Mixtures


- A. Embodied Carbon Compliance
 - Provide documentation that the total GWP of all proposed concrete on the project is less than or equal to 5,785,000 kg of CO2 equivalents or a weighted average of 241 kgCO2e/yd3.

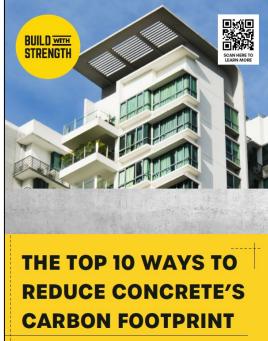
Supporting Resources

5. Establish Carbon Budget

Project	Project GWP (kg)	Weighted GWP (kg/yd³)	GWP Reduction
Benchmark Mixes	5,382,000	301	0
Proposed with Fly Ash and Slag Mixes	4,140,000	232	- 23%
Establish Carbon Budget	4,300,000	240	- 20%*


* Consider added buffer/tolerance


Set Targets for Carbon Footprint


Concrete Materials:

A.Supply concrete mixtures such that the total Global Warming Potential (GWP) of all concrete on the project is less than or equal to **4,300,000 kg** of CO2 equivalents or a weighted average of **240 kgCO2e/yd3**

Concrete Resources

www.nrmca.org/sustainability

www.BuildWithStrength.com