NRMCA Concrete Carbon Calculator:

How to Reduce, Quantify, and Specify Carbon

Carbon Budget – Process

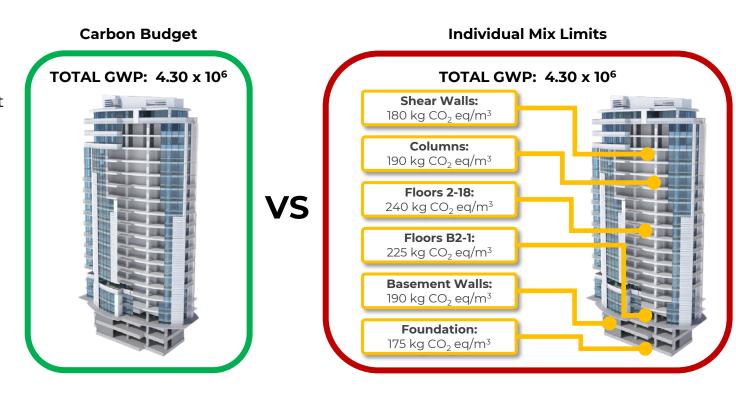
- 1. Concrete Volume Takeoff + Compressive Strengths
- 2. Identify Benchmark Impacts or Targets Per Mix
 - NRMCA Regional Benchmarks, GSA, CalGreen, etc.

3. Identify Proposed Mix Design Impacts with Lower GWP

- ➤ NRMCA Industry Wide EPD Mixes Varying Cementitious
- Product Specific EPD Mixes from a Concrete Producer
- Calculate Impact of Proposed Mix Proportions with NRMCA Tool
- 4. Calculate and Compare Total Impact for Benchmark and Proposed Scenarios
- 5. Carbon Budget: Proposed Low Carbon Concrete Scenario + Buffer
 - > List in specs as a cumulative and/or weighted average target
 - See NRMCA Specification Guide

NRMCA Concrete Carbon Calculator

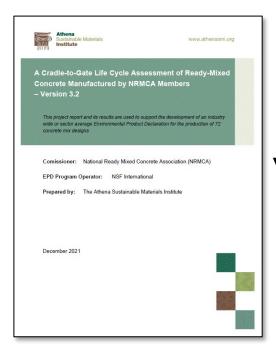
NRMCA's Carbon Tool can Simplify the Process


- 1. Automatically populates benchmark impacts
- 2. Calculates estimated carbon sequestration of the concrete through the life cycle of the structure
- Generates a report documenting the anticipated reduction a low carbon concrete project can expect compared to the benchmark

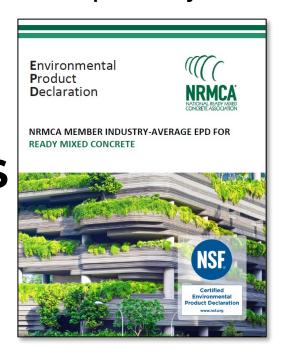
Access at https://nrmca.climateearth.com/

What is a Carbon Budget?

- Project-wide goal instead of GWP limits per class of concrete
- Allows the contractor and producer to adjust mixes as needed to fit material, environmental, and schedule demands
- Larger reductions in foundations and other vertical members, smaller reductions in high early and fastpaced members
- Flexibility prevents coordination issues
- Same overall carbon reduction


Establishing a Carbon Budget

Structural Takeoff



Benchmark Project

Proposed Project

Example Project

Structure:

18-Story Residential Tower

Location:

Boston, MA

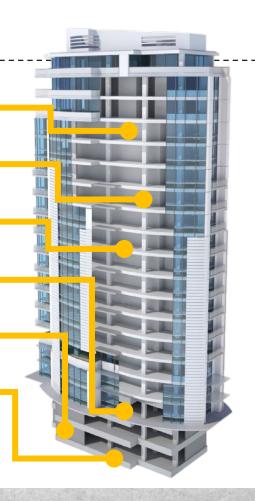
Concrete:

6 Primary Classes

Material:

Fly Ash and Slag Available Shear Walls: $(yd^3) x (GWP) = Impact$

Columns: $(yd^3) \times (GWP) = Impact$

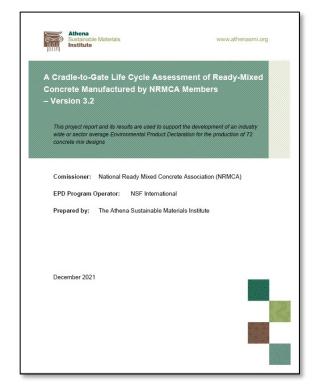

Floors 2-18: $(yd^3) \times (GWP) = Impact$

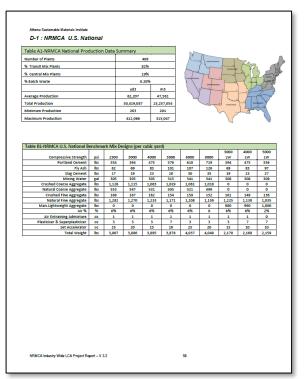
Floors B2-1: $(yd^3) \times (GWP) = Impact$

Basement Walls: $(yd^3) \times (GWP) = Impact$

Mat Foundation: $(yd^3) \times (GWP) = Impact$

TOTAL: Project Impact

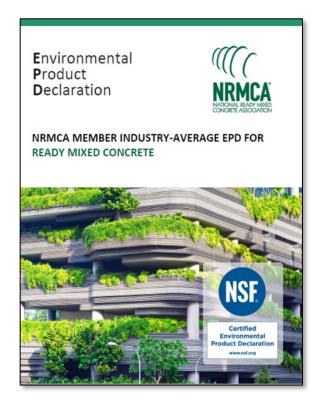


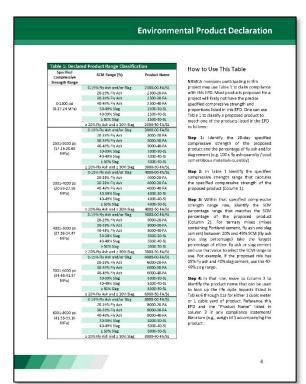

1. Estimating Quantities and Properties

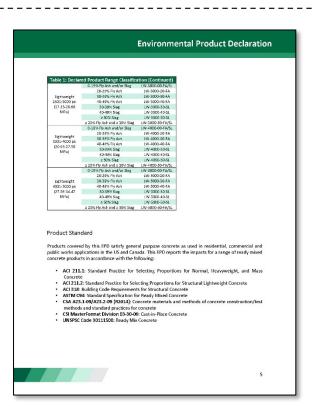
Concrete Element	Concrete Volume (yd³)	Benchmark Mixes (benchmark)*	Proposed Mixes (IW-EPD)*
Shear Walls	7,630	6,000 psi	6,000 psi 30% slag, 20% fly ash
Columns	366	8,000 psi	8,000 psi 40% fly ash
Floors 2-18	4,533	5,000 psi	5,000 psi 30% slag
Floors B2-1	1,067	5,000 psi	5,000 psi 40% fly ash
Basement Walls	444	5,000 psi	5,000 psi 30% slag, 20% fly ash
Foundation	3,844	6,000 psi	6,000 psi 40% slag, 30% fly ash

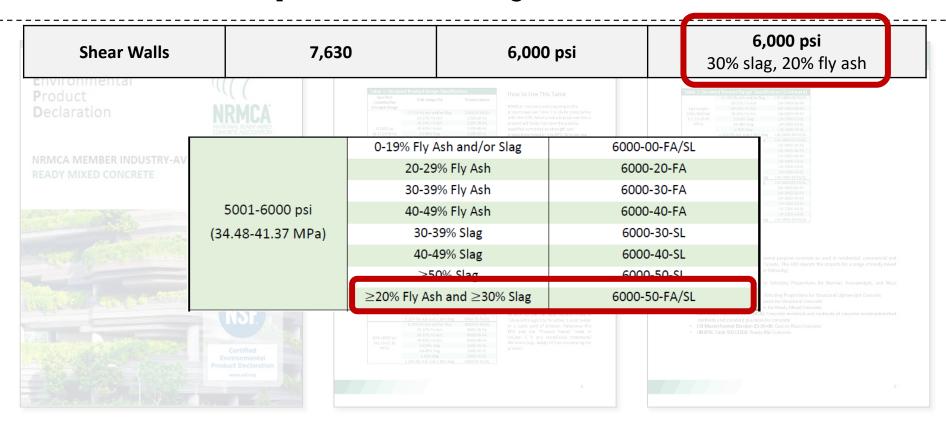
^{*}Should be augmented with local data, knowledge, capabilities

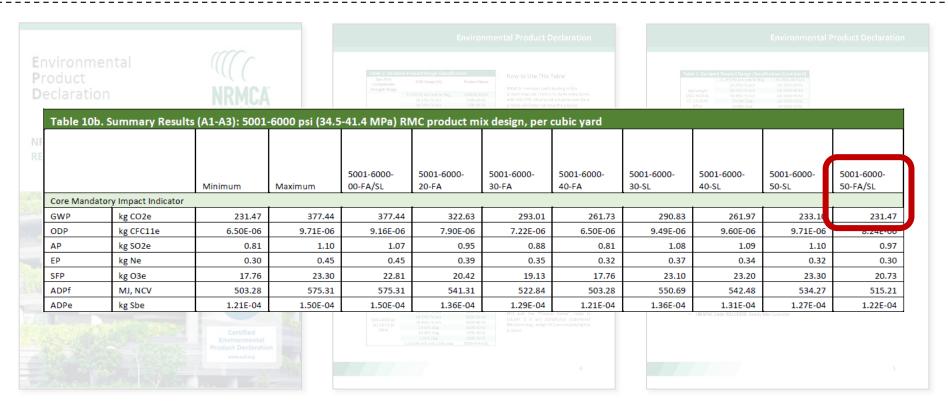
2. NRMCA Benchmark Mixes


2. NRMCA Benchmark Mixes

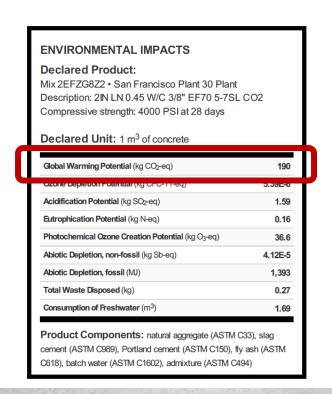

Shear	· Walls	7	7,630		6,0	00 psi	6,000 psi 30% slag, 20% fly asl			y ash
Institute		at orași n.org	Table A1-NRMCA Number of Plants % Transit Mix Plants	National Production Data Summary	489	The state of		RMCA U.S. National LCA Results (per cu	ibic yard)	a 000 2000 IV 4000 IV
Results Tab	le E2-Eastern LCA	Results (per	cubic yard)		andir		1 40000	he Grennels woon woon	- 1 1,000 3,000 2,000	3,000 300044 400044
Strength	psi @28 days	2,500	3,000	4,000	5,000	6,000	8,000	3000LW	4000LW	5000LW
Core Manda	tory Impact Indicator									
GWP	kg CO2e	183.29	201.48	240.22	289.03	305.26	360.51	395.35	437.90	480.10
ODP	kg CFC11e	5.91E-06	6.36E-06	7.32E-06	8.52E-06	8.96E-06	1.03E-05	1.47E-05	1.58E-05	1.69E-05
AP	kg SO2e	0.67	0.71	0.81	0.93	0.98	1.12	2.10	2.22	2.33
EP	kg Ne	0.24	0.26	0.30	0.36	0.37	0.44	0.69	0.74	0.79
SFP	kg O3e	14.31	15.21	17.18	19.61	20.57	23.34	29.65	31.81	33.89
ADPf	MJ, NCV	400.61	412.16	442.07	482.50	503.70	548.75	2,225.23	2,290.96	2,344.41
ADPe	kg Sbe	1.28E-04	1.30E-04	1.36E-04	1.42E-04	1.48E-04	1.55E-04	1.71E-04	1.79E-04	1.87E-04


Note: This step is automated when using NRMCA's Concrete Carbon Calculator


2. NRMCA Benchmark Mixes

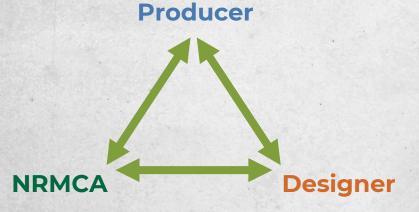

Concrete Element	Concrete Volume (yd³)	Benchmark Mixes GWP (Eastern Region)	Proposed Mixes GWP (IW-EPD)*
Shear Walls	7,630	6,000 psi 305	
Columns	366	8,000 psi 361	
Floors 2-18	4,533	5,000 psi 289	
Floors B2-1	1,067	5,000 psi 289	
Basement Walls	444	5,000 psi 289	
Foundation	3,844	6,000 psi 305	

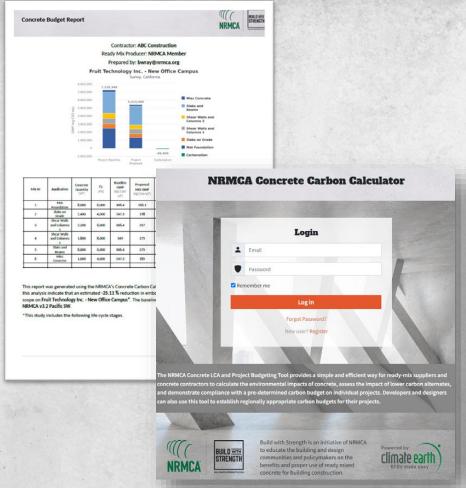
Download at https://www.nrmca.org/sustainability

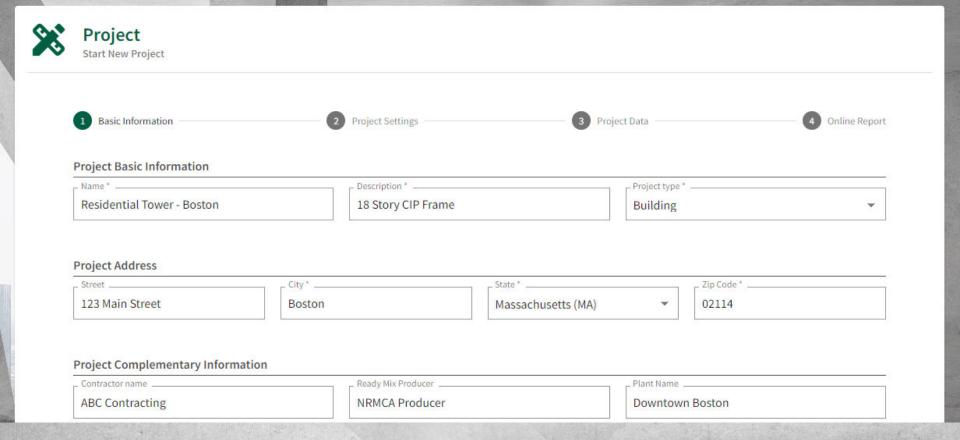

Concrete Element	Concrete Volume (yd³)	Benchmark Mixes GWP (Eastern Region)	Proposed Mixes GWP (IW-EPD)*
Shear Walls	7,630	6,000 psi 305	30% slag, 20% fly ash 232
Columns	366	8,000 psi 361	40% fly ash 303
Floors 2-18	4,533	5,000 psi 289	30% slag 277
Floors B2-1	1,067	5,000 psi 289	40% fly ash 249
Basement Walls	444	5,000 psi 289	30% slag, 20% fly ash 220
Foundation	3,844	6,000 psi 305	40% slag, 30% fly ash 166**

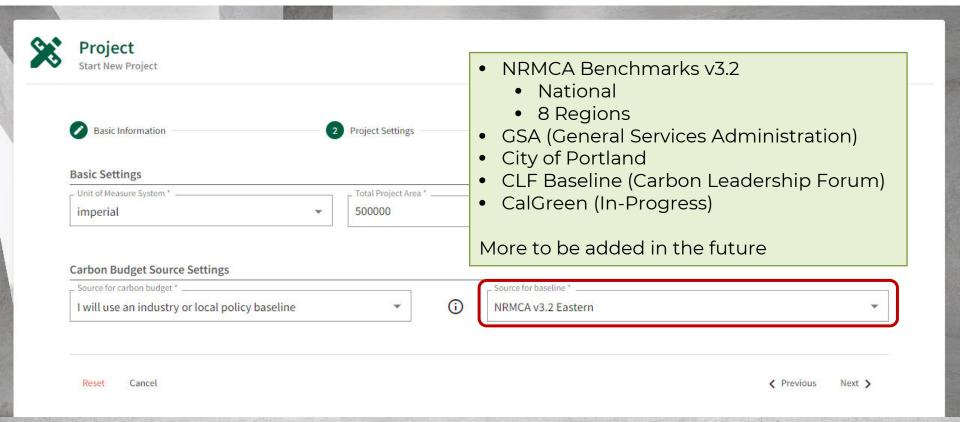
^{*} Should be augmented with local data, knowledge, capabilities

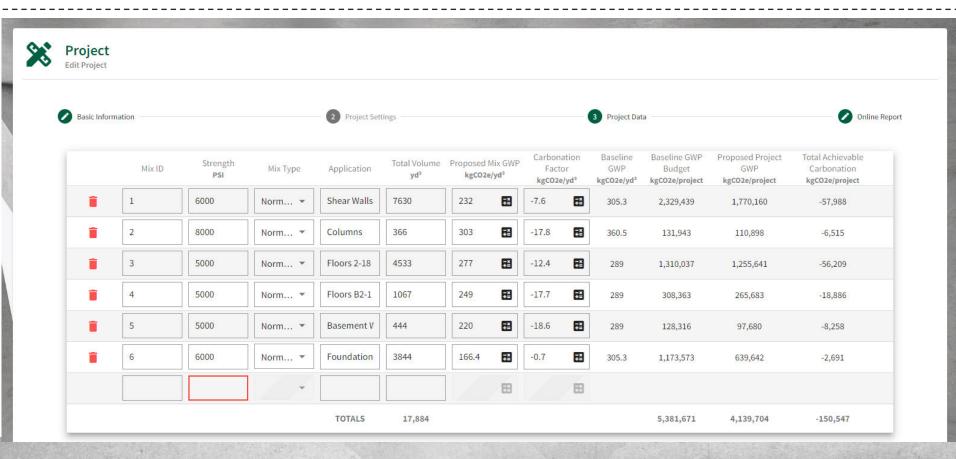
^{**} Use NRMCA Tool to input mix proportions which uses Life Cycle Inventory (LCI) data to estimate impact

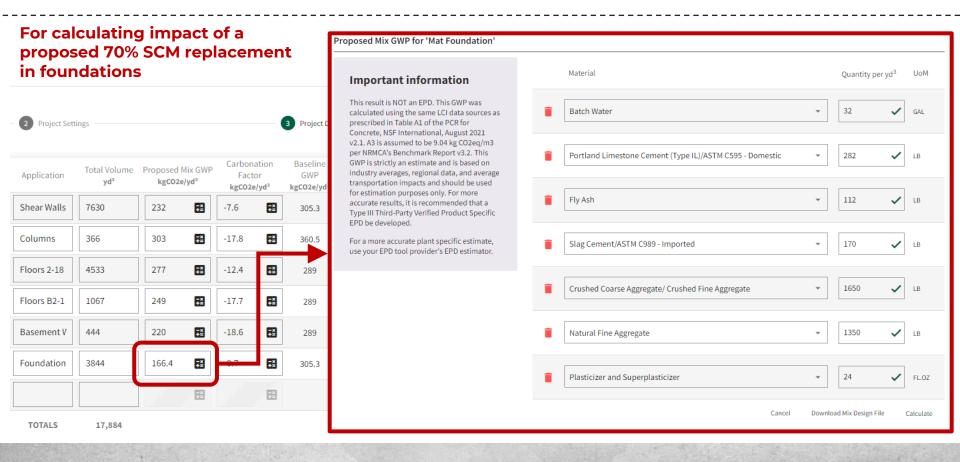

3. Alternate: Product Specific EPD Mixes

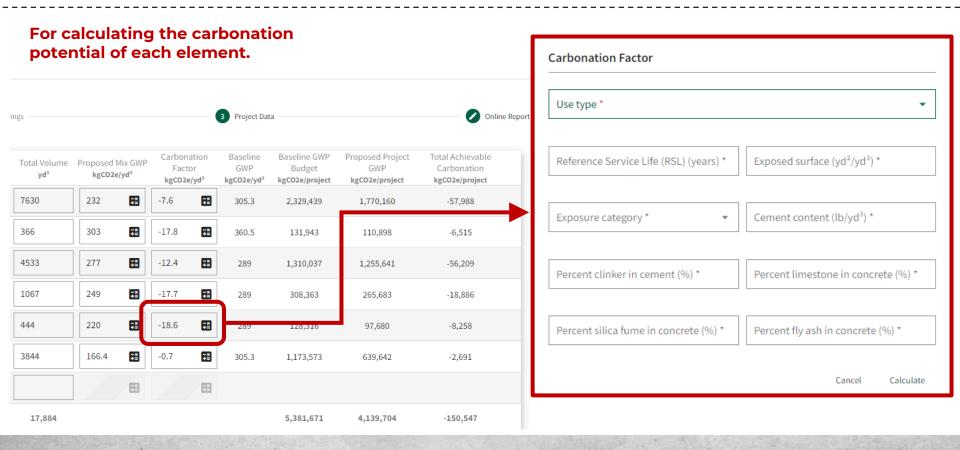

If available, can use for specific mixes from a specific manufacturer and location




NRMCA Concrete Carbon Calculator






Access at https://nrmca.climateearth.com/

Concrete Budget Report Contractor: ABC Contracting Ready Mix Producer: NRMCA Producer Prepared by: bwray@nrmca.org Residential Tower - Boston Boston Massachusetts 5 500 000 5,000,000 **■** Foundation Basement Walls 4,000,000 3,500,000 Floors B2-1 3,000,000 Floors 2-18 2,500,000 2,000,000

Shear Walls

Carbonation

	MixID	Application	Concrete Quantity (yd*)	Fc (PSI)	GWP (kgC02e/ yd³)	Proposed MIX GWP (ligC02e/yd*)	Total Project Baseline GWP (kgCO2e/ project)	Total Project Proposed GWP (ligC02e/project)	Difference from Baseline	Carbonation (kgCO2e/project)
ı	1	Shear Walls	7,630	6,000	305.3	232	2,329,439	1,770,160	-24.01 %	-74,774
	2	Columns	366	8,000	360.5	303	131,943	110,898	-15.95 %	-6,514.8
ı	3	Floors 2-18	4,533	5,000	289	277	1,310,037	1,255,641	-4.15%	-56,209.2
- [4	Floors 82-1	1,067	5,000	289	249	308,363	265,683	-13.84%	-18,885.9
Ī	5	Basement Walls	444	5,000	289	220	128,316	97,680	-23.88 %	-8,258.4
ı	6	Foundation	3,844	6,000	305.3	166.4	1,173,573.2	639,641.6	-45.50%	-2,690.8
- 1							5 301 671 3	4 120 722 6	-23.08 %	-167 222 1

This report was generated using the NRMCA's Concrete Carbon Calculator, powered by Climate Earth. The results of this analysis indicate that an estimated -23.08 % reduction in embodied carbon could be achieved for the concrete scope on Residential Tower - Boston*. The baseline used to calculate this reduction is based on NRMCA v3.2 Eastern.

*This study includes the following life cycle stages.

Concrete Budget Report

Concrete Budget Report

Recommended Specification Additions (continued):

1.7 - Quality Assurance

- A. Ready Mixed Concrete Manufacturer Qualifications: A company manufacturing ready mixed concrete who complies with ASTM C94/C94M requirements for production facilities and equipment
 - Concrete shall be supplied from concrete plants with current certification under the NRMCA Certification of Ready Mixed Concrete Production Facilities, certification or approval by a state or highway agency or equivalent. Criteria of equivalent certification shall be included in the submittal.
 - Quality Control personnel with responsibility for concrete mixtures shall document qualifications demonstrating knowledge and experience with concrete technology and development of performancebased concrete mixtures. certified as an NRMCA Concrete Technologist Level 2, or equivalent. Details covered in equivalent certification grazam shall be documented in the submittal.
 - 3. When requested, the manufacturer shall furnish a Quality Plan
 - Documentation that the concrete supplier participated in supplying data to the NRMCA Cradle-to-Gate Life Cycle Assessment of Ready-Mixed Concrete.

Part 2 - PRODUCTS

2.11 - Concrete Mixtures

- A. Embodied Carbon Compliance
 - Provide documentation that the total GWP of all proposed concrete on the project is less than or equal to 5,785,000 kg of CO2 equivalents or a weighted average of 241 kgCO2e/yd3.

2. - Summary

Part 1 - GENERAL

1. - Related Documents

in accordance with:

A. Embodied Carbon Footprint Goals

Concrete - Version 3 (or later).

Recommended Specification Additions:

Section 033000 - CAST-IN-PLACE CONCRETE

1. This project has a goal of reducing the embodied carbon footprint relative to a benchmark or typical project by XX.5. To accomplish this goal, the target carbon footprint reduction for concrete is 20% below the banchmark established in the NRMCA Cradie-to-Gate Life Cycle Assessment of Ready-Mixed Concrete Version 3 (or later). Specific targets for Global Warming Potential (GWP) are provided in Section 2, CXNCRETE MIXTURES. It shall be permitted to propose innovative products and manufacturing processes for approval by the Engineer of Record. Proposed alternatives shall meet all performance criteria for strength, durability, and constructability, and achieve the re-uired reduction in carbon footgrint.

A. The basis for designing concrete mixtures and demonstrating compliance with carbon budget targets shall be

Mixed Concrete Manufactured by NRMCA Members - Version 3 (or later).

1. National Ready Mixed Concrete Association (NRMCA) Cradle-to-Gate Life Cycle Assessment of Ready-

2. National Ready Mixed Concrete Association, NRMCA Member Industry Average EPD for Ready Mixed

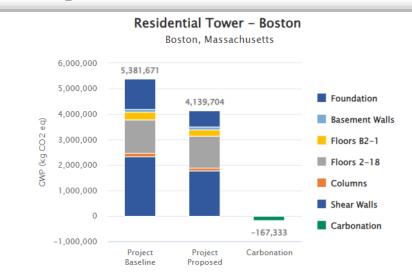
1.5 - Action Submittals

- A. Embodied Carbon Footprint Submittals
 - Plant specific Environmental Product Declaration (EPD) for each concrete mixture proposed for the project accompanying each concrete mixture submittal
 - a. It shall be permitted to substitute plant-specific EPDs with those listed in NRMCA Member Industry Average EPD for Ready Mixed Concrete if the proposed mixtures are similar to those listed and the concrete producer participated in providing data for the NRMCA Cradie-to-Gate Life Curle Assessment of Ready-Mixed Concrete.
 - A calculation showing that the Global Warming Potential (GWP) of all the concrete supplied for the project shall be lower than the GWP target set in Section 2.

Supporting Resources

www.nrmca.org/sustainability

www.BuildWithStrength.com



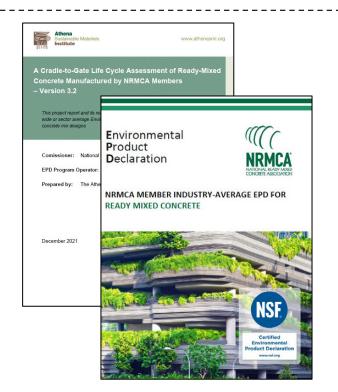
This report was generated using the NRMCA this analysis indicate that an estimated -23.0 scope on Residential Tower - Boston*. The teastern.

*This study includes the following life cyc

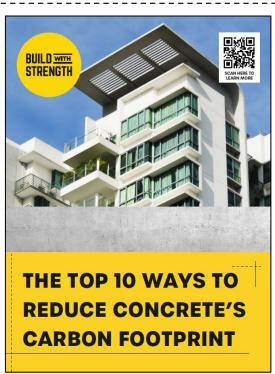
A's 08 ba	Mix ID	Application	Concrete Quantity (yd³)	f'c (PSI)	Baseline GWP (kgCO2e/yd³)	Proposed Mix GWP (kgCO2e/yd³)	Total Project Baseline GWP (kgC02e/yd³)	Total Project Proposed GWP (kgCO2e/project)	Difference from Baseline	Carbonation (kgCO2e/project)	
sta	1	Shear Walls	7,630	6,000	305.3	232	2,329,439	1,770,160	-24 %	-74,774	
	2	Columns	366	8,000	360.5	303	131,943	110,898	-16 %	-6,515	ш
	3	Floors 2-18	4,533	5,000	289	277	1,310,037	1,255,641	-4.2 %	-56,209	(C)
	4	Floors B2-1	1,067	5,000	289	249	308,363	265,683	-13.8 %	-18,886	2
	5	Basement Walls	444	5,000	289	220	128,316	97,680	-23.9 %	-8,258	na
	6	Foundation	3,844	6,000	305.3	166.4	1,173,573	639,642	-45.5 %	-2,691	П
							5.381.671	4,139,704	-23.1%	-167.333	П

5. Establish Carbon Budget

Project	Project GWP (kg)	Weighted GWP (kg/yd³)	GWP Reduction
Benchmark Mixes	5,382,000	301	0
Proposed with Fly Ash and Slag Mixes	4,140,000	232	- 23%
Establish Carbon Budget	4,300,000	240	- 20%*


^{*} Consider added buffer/tolerance

Set Targets for Carbon Footprint


Concrete Materials:

A.Supply concrete mixtures such that the total Global Warming Potential (GWP) of all concrete on the project is less than or equal to 4,300,000 kg of CO2 equivalents or a weighted average of 240 kgCO2e/yd3

Concrete Resources

www.nrmca.org/sustainability

www.BuildWithStrength.com