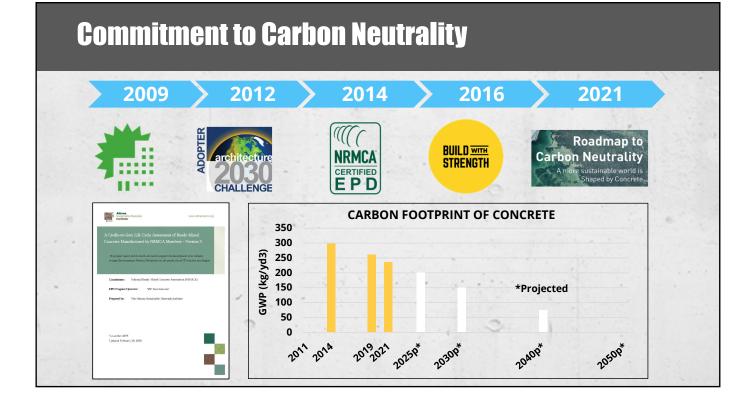


Agenda

- Introduction (Lionel Lemay)
- Why and how do you participate? (Matthew Lemay)
- Data collection and timeline (James Salazar)
- Q&A (type questions in Zoom)

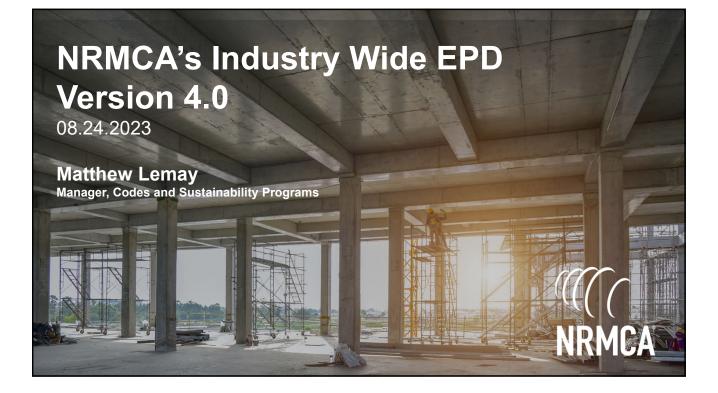

NRMCA Sustainability Initiatives

Goal

• Position NRMCA members to be leaders in green building

Strategies

- Sustainability Programs (EPDs, Benchmarks, etc.)
- Educate members (LEED, GSA, etc.)
- Educate stakeholders (www.concreteinnovations.com)
- Celebrate innovation (www.concreteinnovations.com)
- Research innovative products
- Measure concrete's progress to carbon neutrality

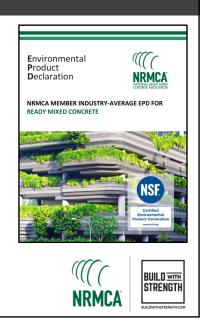

How can you help us meet our goal?

Producers

- Participate in the NRMCA IW EPD and Benchmark Report
- Encourage other producers to participate
- The most accurate benchmarks

State Associations

- Encourage your members to participate
- If we get enough participation, we will publish benchmarks for your state

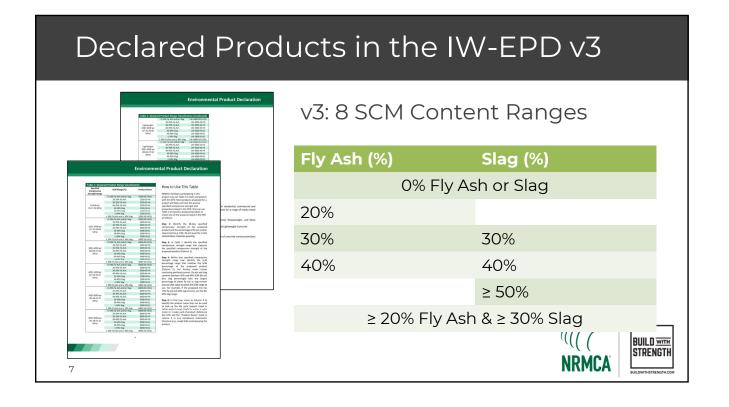

What is an EPD?

ENVIRONMENTAL IMPACTS Declared Product: Mix 34000HW - Pearland #35 LLC Plant Description: 4000 PSI 1* Agg LS HRWR Winter Compressive strength: 4000 PSI at 28 days Declared Unit: 1 m ³ of concrete (1 cvd)	Third-party verified & registered documents that communicate environmental impacts
Circleal Warming Potential (kg CO2+eq) Acidification Potential (kg SO2+eq) 1.11 (0.85) Extroprication Potential (kg SO2+eq) 0.32 (0.24) Photochemical Ocone Creation Potential 2.8.0 (21.4) (kg O2+eq) 8.92E-5 (6.82E-5) Abdetic Depletion, non-feesil (kg) 761 (582) Abdetic Depletion, foesil (kg) 79.3 (60.6)	285 (218) most importantly <u>GWP (global</u> <u>warming potential</u>), measured in kg CO2 equivalent per cubic yard
Product Components: crushed aggregate (A aggregate (ASTM C33), Portland cement (ASTM C5 C618), admixture (ASTM C494), batch water (ASTM Additional detail and impacts are reported on page three of this EPO Ingram Ready Mix NRMCA EPD: 20090 2	50), fy ash (ASTM While protecting proprietary

What is an Industry-Wide EPD?

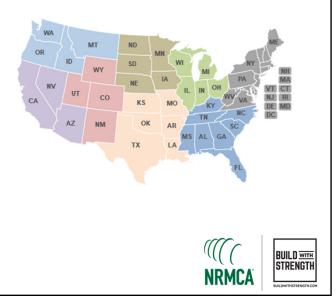
Industry-Wide EPDs represent the average impacts of products (concrete mix designs) across the entire industry.

- Contains many different mix designs
- Useful in most of the same use cases as productspecific EPDs
- Required alongside product-specific EPDs for some cases
- <u>Significantly lower cost</u> than product-specific EPDs: <u>\$50-250</u> per plant vs. <u>\$2,000-\$5,000</u> per plant



Industry-Wide EPD Version History

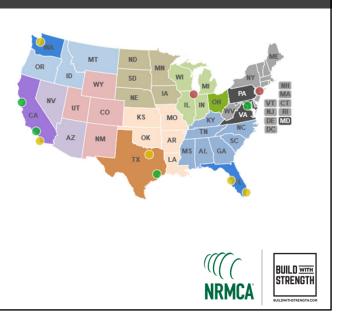
Declared Products in the IW-EPD v3							
Environmental Product Declaration	v3: 9 Str	ength Classes					
Environmental Product Declaration	9	Strength Classes (P	PSI)				
EXTERNOT Stretch Long Community Monte Not Register Name Monte Name Monte Name	2500*						
2000 km /m 2000044 300004 30004 30004 30004 30004 30004	3000*	3000 LW					
Den trage protection of the second s	4000*	4000 LW					
Difference of the second	5000*	5000 LW					
07 30 4.07 Set 04 4.0 Set 04 4.0 07 30 4.07 Set 04 4.0 Set 04 4.0 00 10 10 10 10 10 10 10 10 10 10 10 10 1	6000						
Mark -0000 Fig 0000 Fig <t< td=""><td>8000</td><td></td><td></td></t<>	8000						
5		* Air entrained	Image: Strength NRMCA				


Declared Products in the IW-EPD v4							
Environmental P	roduct Declaration	v4: Air Entra	ined & High	Strength			
Linemark, and prediction of the second secon		Stre	ngth Classes (PSI)			
Encode and a set of the set		2500	2500 AE				
20 JOH v Aux 2000 2014 when ICD Microsoft provide for a post of the ICD Microsoft provide provide 0 JOHNING INFORMATION (INFORMATION INFORMATION INFORMATIONI	in residential, commercial and ects for a range of ready mixed mail, Neasyweight, and Mass.	3000	3000 AE	3000 LW			
The improve Description Description Description UD-12-bits Description Description Description	el Lightweight Concrete	4000	4000 AE	4000 LW			
00012713 61 00119-04 0000046 prepared predictional 12 1001270 40000 000000000000000000000000000000		5000	5000 AE	5000 LW			
UP:10.00 BM BH Bis Issues SMB Bis Iss		6000					
min		8000					
A the first state of the second state of the s		10000+					
6				NKMLA			

Regional Benchmark Report v3

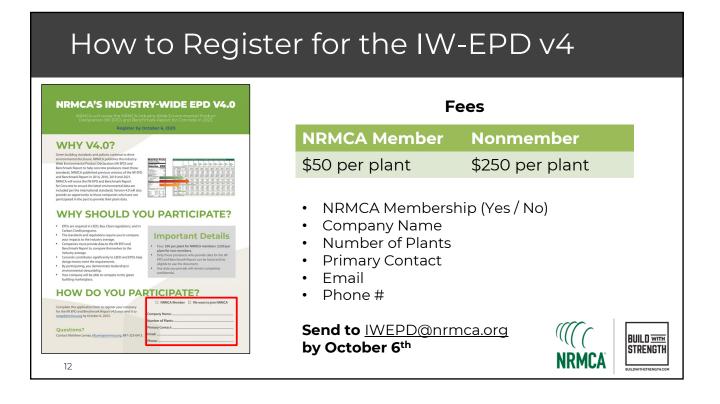
- Companion document to IW-EPD
- Measures impacts of "average mix" produced in each region
- Same strength classes as IW-EPD
- Now being used by state & local policy makers to set benchmarks

9

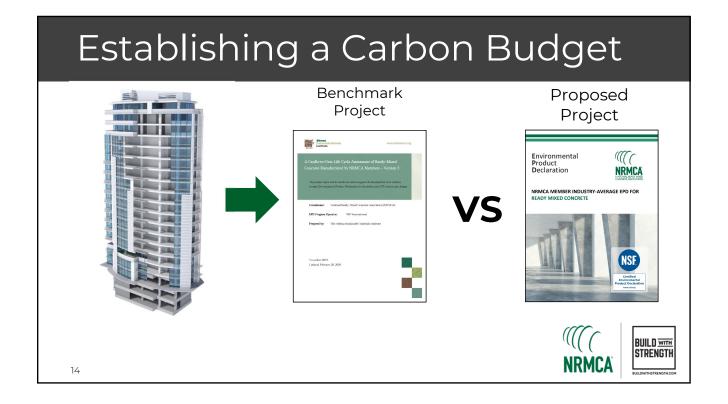


Regional Benchmark Report v4

Subregions

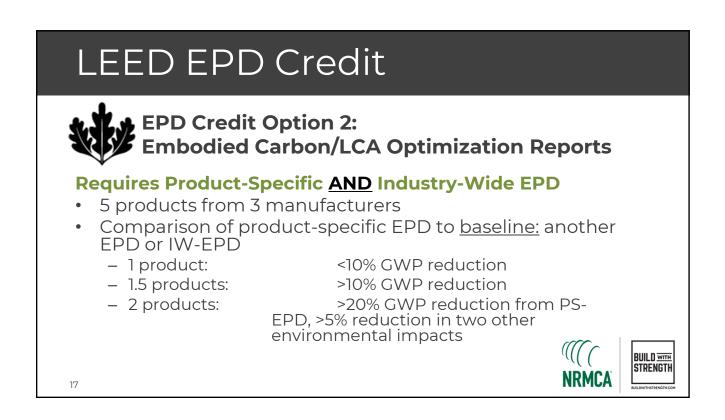

10

- States or metro areas
- Material supply differs between urban & rural areas
- Requires 5 participating companies in each subregion



Regional Benchmark Report v4


California	SoCal & NorCal LA, Bay Area	OR ID SD WI NY
	San Diego	WY 30 MI MI NH
Capital Region	DMV Metro Virginia	CA UT CO KS MO KY VA UT CT IL IN OH WY VA UT CT
	Maryland	AZ NM OK AR TN NC DG
Texas	Houston	TX C LA MS AL GA
	DFW	
Florida	Miami, Tampa	X X
Washington	Seattle	
Oh	io (Statewide)	
Needs inc	reased participation:	
New York, Chic	ago, PA & <u>everywhere else</u>	

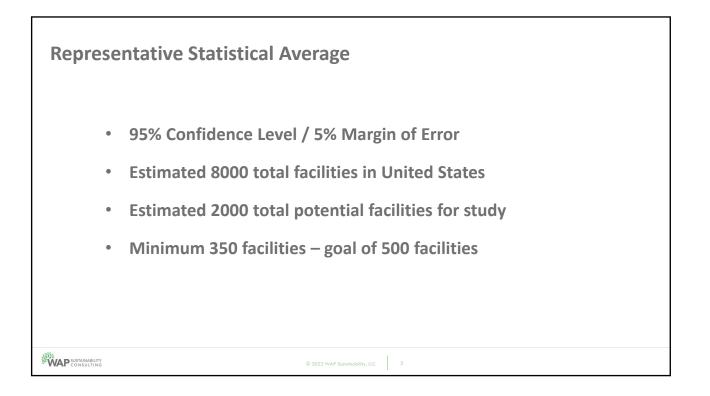


U	Using the IW-EPD to Meet Specified GWP Reduction Goals						
"10% GW	"10% GWP reduction from NRMCA national benchmark"						
Compressive Strength	Benchmark GWP	Benchmark -10%	IW-EPD Mix Code	IW-EPD Mix GWP	GWP Reduction		
4000 PSI	235.61	212.05 4000-40-FA 205.64 12.7%					
Benchmarl (≈18% ceme	From NRMCA Benchmark Report (≈18% cement replacement) You design a mix using <u>40%</u> <u>fly ash</u> & reference matching						

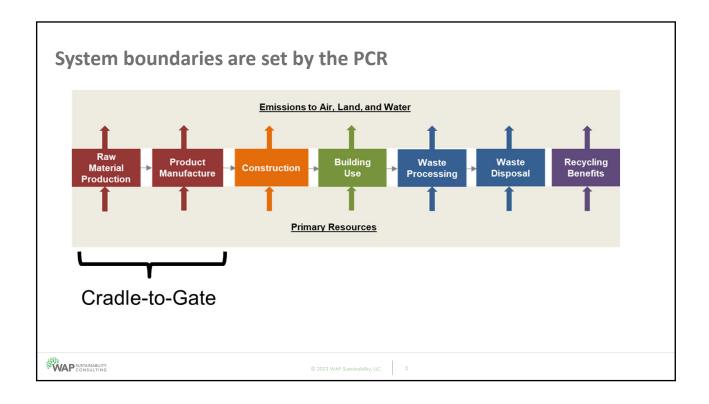
BUILD WITH STRENGTH

NRMCA

IW-EPD in Carbon Credits


- NRMCA is tracking the development of several carbon credit schemes for concrete
- Expected within the next several years
- Expected to use GWP reduction from IW-EPD, require participation (same method as LEED)

18



Pre	vious Indu	stry	y San	nple							
	NRMCA Region	Total	Eastern	Great Lakes Midwest	North Central	Pacific Northwest	Pacific Southwest	Rocky Mountains	South Central	South Eastern	Other
	v1 Reviewed & Updated	243	38	19	21	13	22	11	32	87	0
	v2 Included Surveys	52	10	12	0	1	6	0	15	8	0
	v3 New Surveys	194	17	38	7	18	22	11	44	36	1
	Total Included Surveys	489	65	69	28	32	50	22	91	131	1
	% of Total	100%	13%	14%	6%	7%	10%	4%	19%	27%	0%
	TAINABILITY NSULTING				© 2023 W/	AP Sustainability, LLC	4				

by WAP Sustainability	xes▼ Admin▼	Logout	
Log in			
Email			
Password			
Remember me?			
Log in			
Forgot your password? Register as a new user			
Register as a new User Resend email confirmation			
© 2023 - WAP Sustainability Consulting Unsubscribe			
	© 2023 WAP Sustainability, LLC	6	

Annu	al Production Data		
	General		
	Reporting Period		
	Start Date	01/01/22	
	End Date	12/31/22	
	Plant Information - Annual Production and Usage		
	Concrete Production		
	Total Concrete Production (yd3)	55,000	
	Batch Waste (%)	1	
SUSTAINABILITY CONSULTING	© 2023 WAP Sosteineb	sility, LLC 7	

Purchased Energy		
Purchased Electricity - Used at Plant	kWh	~
Purchased Electricity From Green Grid	 kWh	~
Site Generated Renewable Electricity (solar, wind) - Used at Plant	 kWh	~
Site Generated Bio Based Electricity (wood waste) - Used at Plant	 kWh	~
Site Generated Renewable Electricity (solar, wind) - Sold	 kWh	~
Site Generated Bio Based Electricity (wood waste) - Sold	 kWh	~
Natural Gas - Used at Plant	 m3	~
Secondary Fuels - Liquid	 1	~
Secondary Fuels - Solid	 metric ton	~
Fuel Oil - Used at Plant	 1	~
Diesel - Used at Plant	1	~
Gasoline - Used at Plant	 1	~
LPG (Liquified Propane Gas) - Used at Plant	 1	~
Transit Mix Only - Diesel - Used in Fleet	1	~
Natural Gas - Used in Fleet	 m3	~

Other In	puts		
	Annual Plant Consumables		
	Form Release Agent	· ·	
	Road Dust Control Chemicals (e.g. chlorides)	 	
	Oil and Lubricants	 	
	Grease	· ·	
		 	·
	Water Use		1
	Total Water Use	· ·	
	Percentage of Batch Water That Is Recycled Wash Water	% ~]
	Waste Generated		
	Hazardous Solid Waste	metric ton 🛩]
	Non-Hazardous Solid Waste	metric ton 🗸	
			·
	Air Emissions (if tracked)	 	1
	Particulates, PM-2.5	kg 🗸	5
	Particulates, PM-10	kg 🗸	
	Particulates, total	kg 🗸	
	Lead	kg 🗸	
	Hg	kg 🗸	
SUSTAINABILITY CONSULTING	© 2023 WAP Sustoinability, LLC 9		

Material Type	One Way Distances From Source.
Cement ~	Truck Distance (mi)
Supplier	
~	Rail Distance (mi)
Amount Unit of Measure	
~	Ocean Distance (mi)
Annual amount purchased	
	Barge Distance (mi)

	Timeline and Next Steps	
SUSTAINABILITY	© 2023 WAP Sustoinobility, LLC 12	

