Low Carbon Concrete Codes Using the NRMCA Carbon Calculator

Colin Lobo, Exec VP Engineering, NRMCA
Brandon Wray, Senior Director, Building Innovations

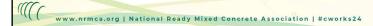
1

Sustainability Requirements

- ACI 318, Appendix N
- □ ACI 323 Low-Carbon Concrete Code Requirements
- ACI 301 Specifications for Concrete Construction
- EPA Interim Guidelines

ACI 318 Appendix N

- ☐ For Sustainability Comply with Appendix N
 - N.1 Notation and Terminology
 - N.2 Scope
 - N.3 Concrete mixtures
 - 1. Max GWP limit for each concrete mixture based on f'_c (or other basis)
 - · Limits based on benchmark
 - Allows project GWP budget limits for individual mix classes can be exceeded
 - Documented by independent LCA, independent EPD, independent LCA tool
 - 2. Reduced GWP of mixture relative to mixtures of same class (producer specific) (EPD not available in region)
 - 3. Other sustainability limitation designer's choice
 - · Benchmark industry, regional, or local average



vww.nrmca.org | National Ready Mixed Concrete Association | #cworks24

3

ACI 318 Appendix N

- N.4 Sustainability of Structural Concrete System
 - Compare systems Whole building LCA ASTM E2921
 - Impact categories GWP, acidification, eutrophication, ozone depletion, smog potential
 - LCI categories water consumption, solid waste, total energy demand, total nonrenewable energy demand
 - Permitted to include operational energy in WBLCA (thermal mass benefits of concrete)
 - · Proposed Structural System improvement over a reference building
- N.5 Resilience
 - · Consider reliance for hazards and time to recover
 - Intended use, risk based on geography, consequences of damage, time to recover from damage state
 - Owner states required levels of performance for resilience (for hazards)

ACI 323

- Low-Carbon Concrete Code Requirements & Commentary
 - Cast in place concrete
 - Buildings

Does not apply to

- Pavements
- precast concrete,

Bridges

- auger cast concrete,shotcrete, or
- Other structures
- concrete strength < 2500 psi or > 8000 psi
- Purpose: Limit max GWP of concrete on a project
- No compromise to strength, stability, serviceability, durability, or integrity of the concrete structure.

www.nrmca.org | National Ready Mixed Concrete Association | #cworks24

0

ACI 323

- Upfront embodied GWP of Concrete Mixtures
 - GWP Documentation
 - Independent 3rd party LCA
 - Independent 3rd party product-specific EPD
 - Independent 3rd party LCA tool
 - EPD or LCA in accordance with ISO 21930
 - Current PCR NSF International, 2021

ACI 323

■ Weighted average project benchmark GWP

$$GWP_{benchmark\;avg} = \frac{\sum_{i=1}^{n} GWP_{benchmark\;i} \times Vol_{i}}{\sum_{i=1}^{n} Vol_{i}}$$

■ Weighted average project GWP

$$GWP_{project\ avg} = \frac{\sum_{i=1}^{n} GWP_{project\ i} \times Vol_{i}}{\sum_{i=1}^{n} Vol_{i}}$$

 \square GWP project avg $\leq \alpha$ GWP benchmark avg

Appendix A in 323: Appendix C: NRMCA Member National and Regional LCA Benchmark (Industry Average) Report – V 3.2 (Athena Sustainable Materials Institute 2022).

 $\alpha = 0.85$ for large projects with Appendix A

CONCRETEWORKS

www.nrmca.org | National Ready Mixed Concrete Association | #cworks24

/

ACI 323

- "Large projects"
 - Buildings floor area ≥ 50,000 sq ft
 - Pavements \geq 7,500 yd³
 - Bridges deck area ≥ 25,000 sq ft
 - Other structures ≥ 7,500 yd³
- Smaller projects
 - Report GWP
 - Strategies to reduce GWP

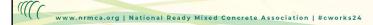


Table B.3 Weighted average benchmark GWP calculations

Column:	A	В	C	D	E
Application	Concret e Class	f'c (psi)	Voli (yd³)	GWPbenchmark i (kgCO _{2e} /yd ³)	Total GWP _{benchrmark} for class (kgCO _{2e}) (Column C x D)
Topping slabs, curbs, footings, SOMD	1	4000	1299	242	263,177
Below grade walls, SOG	2	5000	469	296	116,171
Elevator pit walls	3	5000	23	296	6472
Columns, shear walls, vehicle barrier walls	4	6000	1366	312	338,358
Elevated decks	5	6000	3867	312	1,037,902
			$\Sigma = 7024$		$\Sigma = 2,092,686$

$$GWP_{benchmark\ avg} = \frac{\sum_{i=1}^{n} GWP_{benchmark\ i} \times Vol_{i}}{\sum_{i=1}^{n} Vol_{i}} = \frac{2,092,686}{7024} = 297.9 \ \ kgCO_{2e}/yd^{3}$$

www.nrmca.org | National Ready Mixed Concrete Association | #cworks24

ACI 323 - Example

Table B.2 Weighted average project GWP calculations

able B.2 Weighted aver			-	n.	т.
Column:	A	В	C	D	${f E}$
Application	Concrete	f'c	Voli	GWP _{project i}	Total GWP _{project} for class
	Class	(psi)	(yd³)	(kgCO _{2e} /yd ³)	$(kgCO_{2e})$
					(Column C x D)
Topping slabs, curbs,	1	4000	1299	202.6	263,177
footings, SOMD					
Below grade walls,	2	5000	469	247.7	116,171
SOG					
Elevator pit walls	3	5000	23	281.4	6472
Columns, shear walls,	4	6000	1366	247.7	338,358
vehicle barrier walls					
Elevated decks	5	6000	3867	268.4	1,037,902
			$\Sigma = 7024$		$\Sigma = 1,762,082$

$$\textit{GWP}_{project\;avg} = \frac{\sum_{i=1}^{n} \textit{GWP}_{project\;i\;x\;Vol}_{i}}{\sum_{i=1}^{n} \textit{Vol}_{i}} = \frac{1,762,082}{7024} = 250.8 \;\; \text{kgCO}_{2e}/\text{yd}^{3}$$

$$\frac{\text{GWP}_{\text{project avg}}}{\text{GWP}_{\text{benchmark avg}}} = \frac{250.8}{297.9} = 0.84$$

www.nrmca.org | National Ready Mixed Concrete Association | #cworks24

EPA Label Program

- □ Label Program Low Embodied Carbon Const. Matls (EPA)
- Data Quality Improvement
 - US EPA Criteria for Product Category Rules (PCRs)
- Setting Thresholds for "Substantially Lower GWP"
 - Industry averages
 - Based on collected EPDs

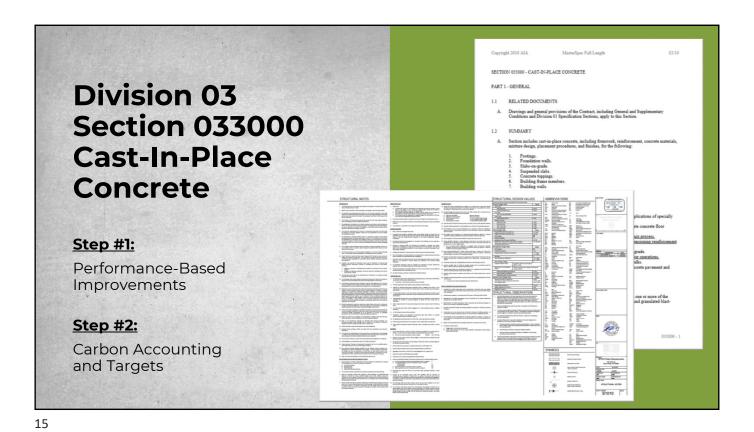
11

EPA Label Program

- ☐ GWP from product-specific Type III EPDs
- □ Concrete EPDs rely on upstream facility specific cement EPDs
- ☐ Targets based verified source of same product category
- EPA Interim Guidelines to GSA and FHWA
 - Lowest 20th percentile
 - Lowest 40th percentile
 - Less than Industry average

FHWA GWP Benchmarks (from NRMCA)

- 6 Conventional Concrete Mixtures &
- 3 Lightweight Concrete Mixtures
- Developed 20th and 40th percentiles


Table 6: Benchmark for 3,000 psi mixture in Pennsylvania

[all values in kg CO2e / m3]	A1 (Eastern)	A2 (Eastern)	A2 (Eastern) A3 (Eastern)		Current A1- A3 GSA Thresholds
20%	207	12	7	226	257
40%	226	17	9	252	291
50%	229	20	10	259	х
Average	230	22	11	263	318


CONCRETEWORKS

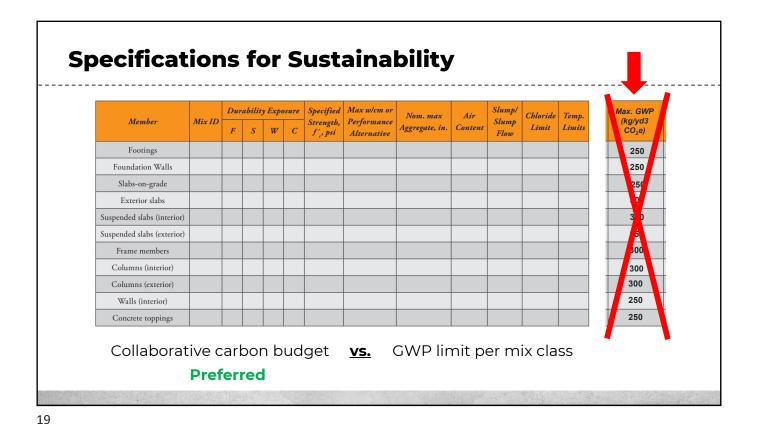
www.nrmca.org | National Ready Mixed Concrete Association | #cworks24

Step #1 - Performance Based Improvements Goal: Prescription Performance Specifying for Performance **Methods:** > Emphasize ACI 318 Exposure Classes Guide to Improving > Alt testing for durability/design Specifications for • Shrinkage, MOE, RCP, ASR Ready Mixed Concrete > Expand acceptable materials > Extended strength development **Results:** \mathbb{M} Efficient and Optimized Mix Designs **NRMCA**

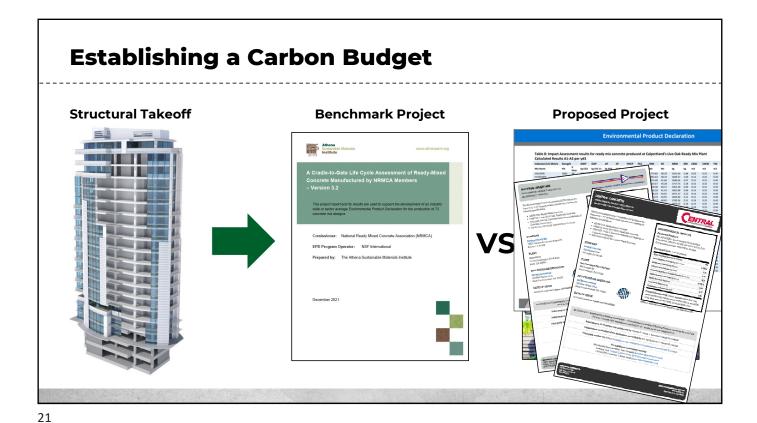
Step #2 - Carbon Accounting and Targets

Goal:

Trigger the use of low carbon materials


Methods:

- ➤ Collect EPDs
- > Establish a Carbon Budget

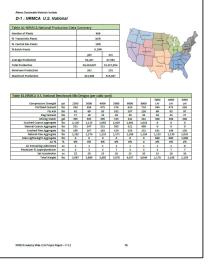

Results:

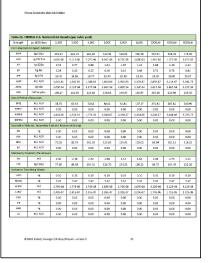
- > Procurement of low carbon concrete
- Flexibility for the contractor and producer
- > Buffer for as-built conditions

Specifications for Sustainability Project Budget Individual Mix Limits TOTAL GWP: 4.30 x 106 TOTAL GWP: 4.30 x 106 Shear Walls: 180 kg CO₂ eq/m³ Columns: 190 kg CO₂ eq/m³ VS Floors 2-18: 240 kg CO₂ eq/m³ Floors B2-1: 225 kg CO₂ eq/m³ **Basement Walls:** 190 kg CO₂ eq/m³ Foundation: 175 kg CO₂ eq/m³

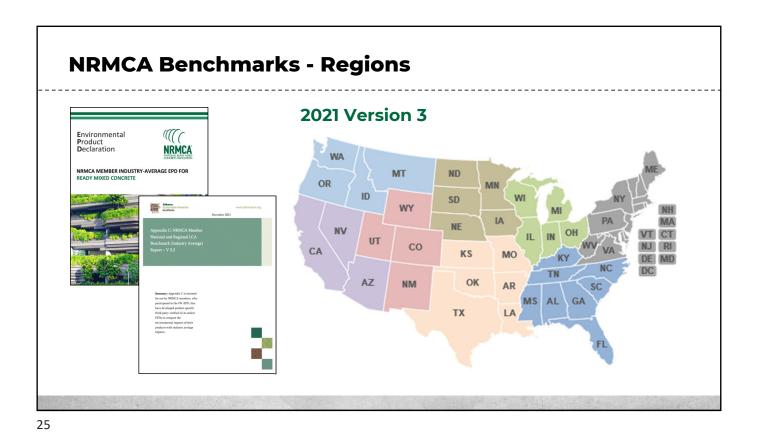
Example Project Structure: Shear Walls: $(yd^3) \times (GWP) = Impact$ 18-Story Residential Tower Columns: $(yd^3) \times (GWP) = Impact$ **Location:** Boston, MA Floors 2-18: $(yd^3) \times (GWP) = Impact$ **Concrete:** Floors B2-1: $(yd^3) \times (GWP) = Impact$ 6 Primary Classes **Material:** Basement Walls: $(yd^3) \times (GWP) = Impact$ Fly Ash and Slag **Available** Mat Foundation: $(yd^3) \times (GWP) = Impact$ **TOTAL:** Project Impact

Estimating Quantities and Properties

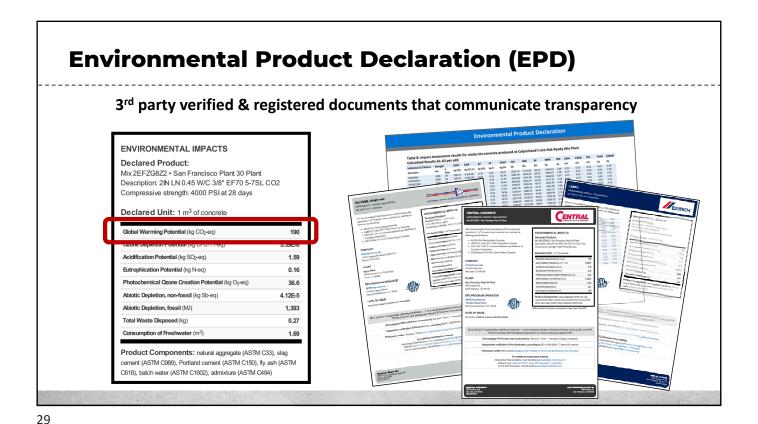

Concrete Element	Concrete Volume (yd³)	Benchmark Mixes (benchmark)*	Proposed Mixes (IW-EPD)*
Shear Walls	7,630	6,000 psi	6,000 psi 30% slag, 20% fly ash
Columns	366	8,000 psi	8,000 psi 40% fly ash
Floors 2-18	4,533	5,000 psi	5,000 psi 30% slag
Floors B2-1	1,067	5,000 psi	5,000 psi 40% fly ash
Basement Walls	444	5,000 psi	5,000 psi 30% slag, 20% fly ash
Foundation	3,844	6,000 psi	6,000 psi 40% slag, 30% fly ash


^{*}Should be augmented with local data, knowledge, capabilities

23


NRMCA Benchmark Mixes

Download at https://www.nrmca.org/sustainability

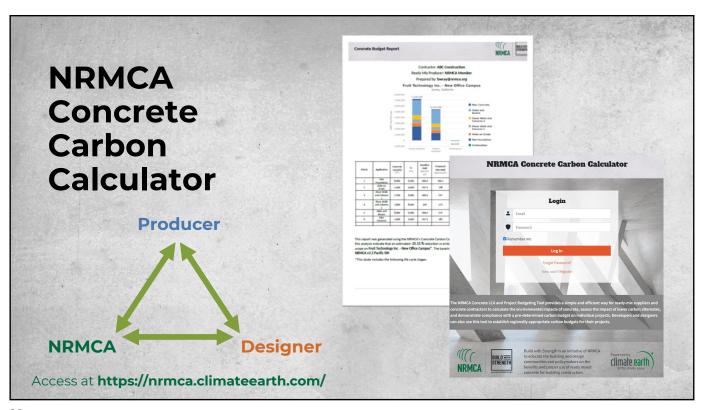


NRMCA Benchmarks - Regions 2021 Version 3 2024 Version 4 (In Progress) Environmental Product Declaration **NRMCA** NRMCA MEMBER INDUSTRY-AVERAGE EPD FOR MT ND OR ID SD WY NE UT CO KS ΑZ NM

Identifying Global Warming Potential

* Note: Pay attention to units as the report has GWP listed per yd³ and per m³

Concrete Element	Concrete Volume (yd³)	Benchmark Mixes GWP (Eastern Region)*	Proposed Mixes GWP (IW-EPD)
Shear Walls	7,630	6,000 psi 305	
Columns	366	8,000 psi 361	
Floors 2-18	4,533	5,000 psi 289	
Floors B2-1	1,067	5,000 psi 289	
Basement Walls	444	5,000 psi 289	
Foundation	3,844	6,000 psi 305	

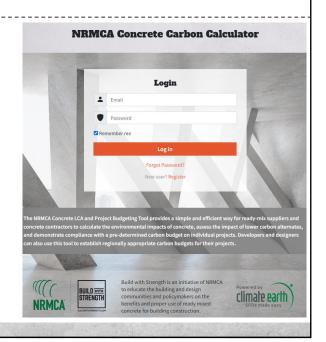


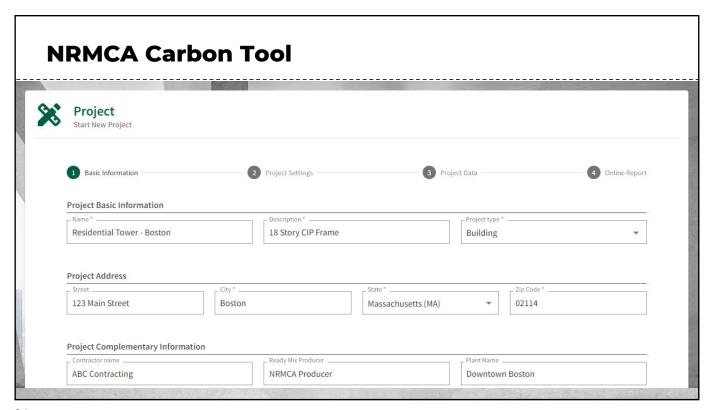
NRMCA Proposed Industry Wide EPD Mixes 6,000 psi **Shear Walls** 7,630 6,000 psi 30% slag, 20% fly ash Table 10b. Summary Results (A1-A3): 5001-6000 psi (34.5-41.4 MPa) RMC product mix design, per cubic yard 5001-6000-5001-6000-5001-6000-5001-6000-5001-6000-5001-6000-5001-6000-5001-6000-00-FA/SL Core Mandatory Impact Indicator GWP 231.47 377.44 377.44 322.63 293.01 261.73 290.83 261.97 233.1 231.47 kg CO2e ODP kg CFC11e 6.50E-06 9.71E-06 9.16E-06 7.90E-06 7.22E-06 6.50E-06 9.49E-06 9.60E-06 9.71E-0 ΑP kg SO2e 0.81 1.10 1.07 0.95 0.88 0.81 1.08 1.09 1.10 0.97 EP 0.37 0.34 0.30 0.45 0.45 0.39 0.35 0.32 0.32 0.30 kg Ne SFP kg O3e 17.76 23.30 22.81 20.42 19.13 17.76 23.10 23.20 23.30 20.73 ADP MJ, NCV 503.28 575.31 575.31 541.31 522.84 503.28 550.69 542.48 534.27 515.21 kg Sbe 1.21E-04 1.50E-04 1.36E-04 1.29E-04 1.21E-04 1.36E-04 1.31E-04 1.27E-04 1.22E-04 1.50E-04 Download at https://www.nrmca.org/sustainability

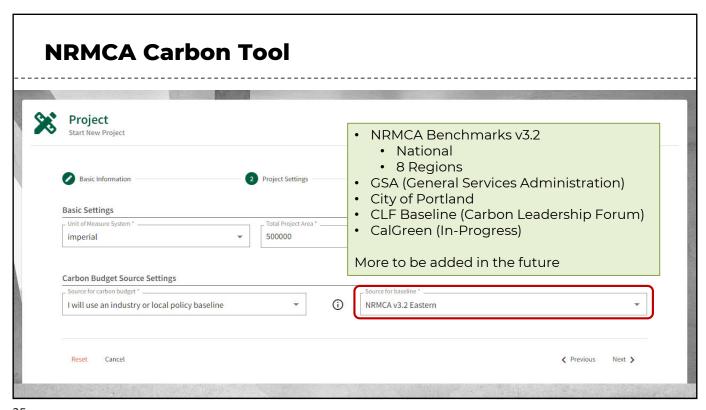
Identifying Global Warming Potential

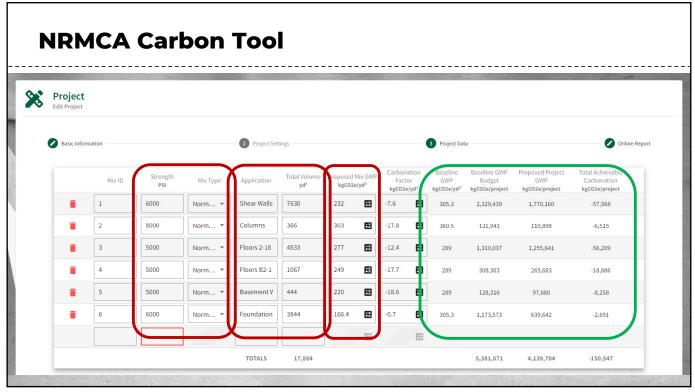
Concrete Element	Concrete Volume (yd³)	Benchmark Mixes GWP (Eastern Region)	Proposed Mixes GWP (IW-EPD)*
Shear Walls	7,630	6,000 psi 305	30% slag, 20% fly ash 232
Columns	366	8,000 psi 361	40% fly ash 303
Floors 2-18	4,533	5,000 psi 289	30% slag 277
Floors B2-1	1,067	5,000 psi 289	40% fly ash 249
Basement Walls	444	5,000 psi 289	30% slag, 20% fly ash 220
Foundation	3,844	6,000 psi 305	40% slag, 30% fly ash 166**

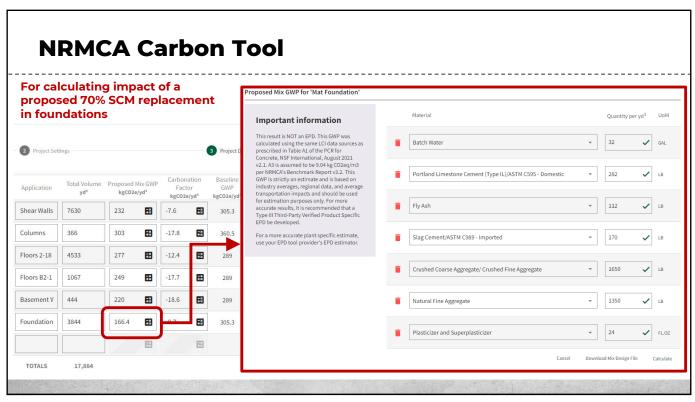
^{*} Should be augmented with local data, knowledge, capabilities

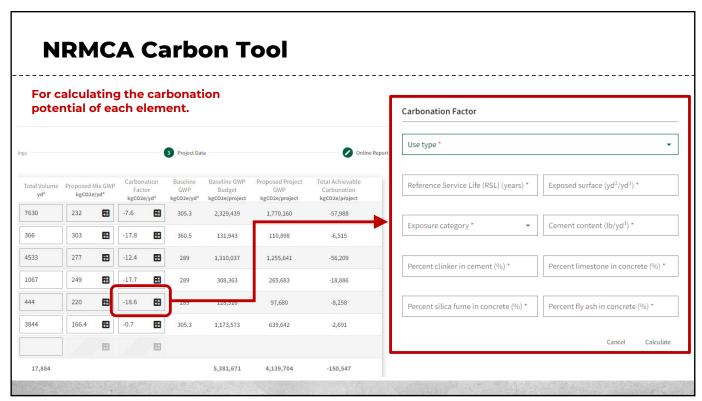

^{**} Use NRMCA Tool to input mix proportions which uses Life Cycle Inventory (LCI) data to estimate impact

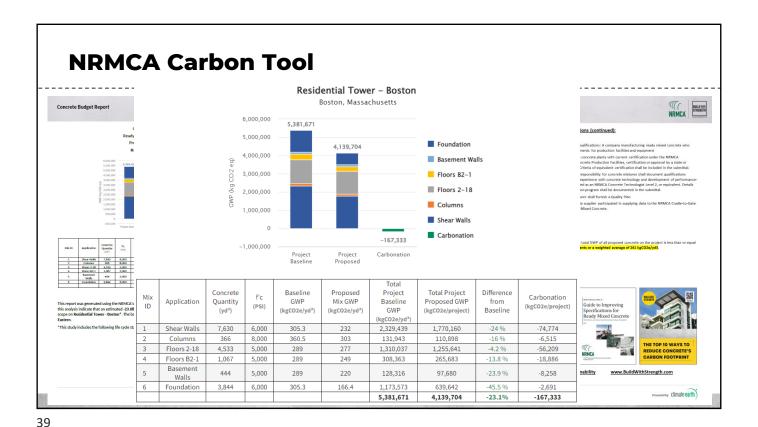

NRMCA Concrete Carbon Calculator


NRMCA's Carbon Tool can Simplify the Process


- 1. Automatically populates benchmark impacts
- 2. Calculates estimated carbon sequestration of the concrete through the life cycle of the structure
- Generates a report documenting the anticipated reduction a low carbon concrete project can expect compared to the benchmark


Access at https://nrmca.climateearth.com/





Final Results

Project	Project GWP (kg)	Weighted GWP (kg/yd³)	GWP Reduction
Benchmark Mixes	5,382,000	301	0
Proposed with Fly Ash and Slag Mixes	4,140,000	232	- 23%
Establish Carbon Budget	4,300,000	240	- 20%*

^{*} Consider added buffer/tolerance

41

Example - Specification Language

Recommended Specification Additions:

Section 033000 - CAST-IN-PLACE CONCRETE

Part 1 - GENERAL

1.1 - Related Documents

- A. The basis for designing concrete mixtures and demonstrating compliance with carbon budget targets shall be in accordance with:
 - National Ready Mixed Concrete Association (NRMCA) Cradle-to-Gate Life Cycle Assessment of Ready-Mixed Concrete Manufactured by NRMCA Members – Version 3 (or later).
 - National Ready Mixed Concrete Association, NRMCA Member Industry Average EPD for Ready Mixed Concrete Version 3 (or later).

1.2 - Summary

A. Embodied Carbon Footprint Goals

1. This project has a goal of reducing the embodied carbon footprint relative to a benchmark or typical project by XX %. To accomplish this goal, the target carbon footprint reduction for concrete is 20% below the benchmark established in the NRMCA Cradle-to-Gate Life Cycle Assessment of Ready-Mixed Concrete Version 3 (or later). Specific targets for Global Warming Potential (GWP) are provided in Section 2, CONCRETE MIXTURES. It shall be permitted to propose innovative products and manufacturing processes for approval by the Engineer of Record. Proposed alternatives shall meet all performance criteria for strength, durability, and constructability, and achieve the required reduction in carbon footprint.

1.5 - Action Submittals

A. Embodied Carbon Footprint Submittals

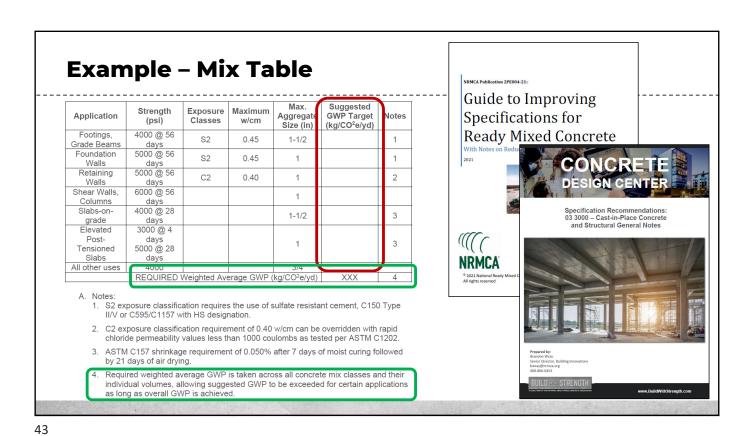
- Plant specific Environmental Product Declaration (EPD) for each concrete mixture proposed for the project accompanying each concrete mixture submittal
 - a. It shall be permitted to substitute plant-specific EPDs with those listed in NRMCA Member Industry Average EPD for Ready Mixed Concrete if the proposed mixtures are similar to those listed and the concrete producer participated in providing data for the NRMCA Cradle-to-Gate Life Cycle Assessment of Ready-Mixed Concrete.
- A calculation showing that the Global Warming Potential (GWP) of all the concrete supplied for the project shall be lower than the GWP target set in Section 2.

Recommended Specification Additions (continued):

1.7 - Quality Assurance

- A. Ready Mixed Concrete Manufacturer Qualifications: A company manufacturing ready mixed concrete who complies with ASTM C94/C94M requirements for production facilities and equipment
 - Concrete shall be supplied from concrete plants with current certification under the NRMCA Certification of Ready Mixed Concrete Production Facilities, certification or approval by a state or highway agency or equivalent. Criteria of equivalent certification shall be included in the submittal.
 - 2. Quality Control personnel with responsibility for concrete mixtures shall document qualifications demonstrating knowledge and experience with concrete technology and development of performancebased concrete mixtures. certified as an NRMCA Concrete Technologist Level 2, or equivalent. Details covered in equivalent certification program shall be documented in the submittal.
 - When requested, the manufacturer shall furnish a Quality Plan
 - Documentation that the concrete supplier participated in supplying data to the NRMCA Cradle-to-Gate Life Cycle Assessment of Ready-Mixed Concrete.

Part 2 - PRODUCTS


2.2 - Concrete Materials

- A. Cementitious Materials: Materials conforming to the following are permitted:
 - Portland Cement (ASTM C150), Blended Hydraulic Cement (ASTM C595), Hydraulic Cement (ASTM C1157), Fly Ash or Natural Pozzolan (ASTM C618), Slag Cement (ASTM C989)

2.11 - Concrete Mixtures

A. Embodied Carbon Compliance

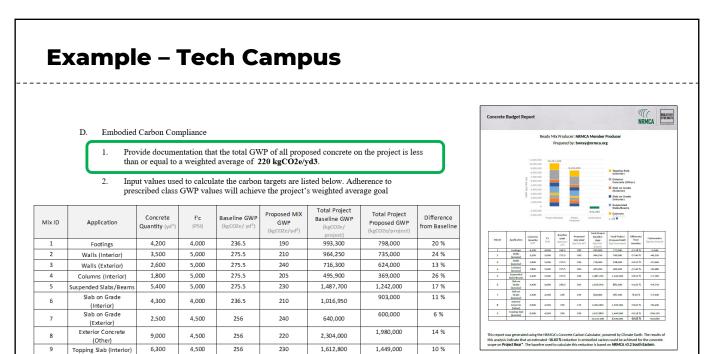
 Provide documentation that the total GWP of all proposed concrete on the project is less than or equal to 5,785,000 kg of CO2 equivalents or a weighted average of 241 kgCO2e/yd3.

Example - Tech Campus

<u>Performance</u> <u>Improvements:</u>

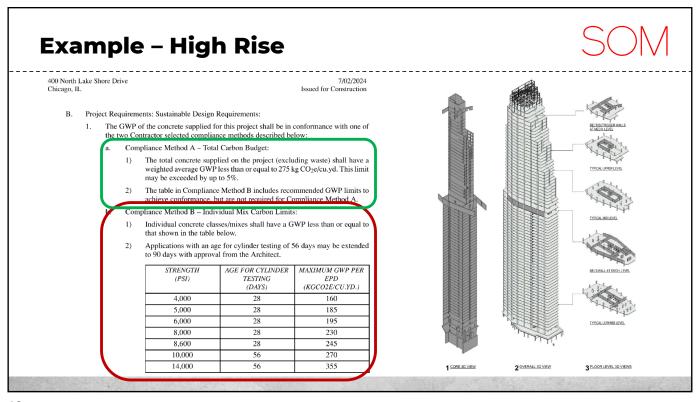
 BWS makes optimization recommendations

Carbon Bidding:


 BWS connects with member producers in region to identify locally applicable carbon targets

Project:	C	onfidential (202	24)	Location			Producer:	
			Des	igned				
	Strength			Max Agg.			Exposure	Volume
Application	(psi)	Day	w/cm	Size	Air	Shrinkage	Class	(yds)
Footings	4000	28	0.45	1"	4.5% ± 1.5%	0.050%	F2, S0, W1, C1	4,200
Walls (interior)	5000	28	0.45	3/4"		0.050%	F0, S0, W0, C1	3,500
Walls (exterior)	5000	28	0.45	3/4"	4.5% ± 1.5%	0.050%	F2, S0, W1, C1	2,600
Columns (interior)	5000	28	0.45	3/4"		0.050%	F0, S0, W0, C1	1,800
Suspended Slabs/Beams	5000	28	0.40	3/4"		0.045%	F0, S0, W0, C1	5,400
Slab on Grade (interior)	4000	28	0.45	1"		0.045%	F0, S0, W0, C1	4,300
Slab on Grade (exterior)	4500	28	0.40	1"	4.5% ± 1.5%	0.045%	F2, S0, W1, C2	2,500
Exterior Concrete (other)	4500	28	0.45	3/4"	4.5% ± 1.5%	0.050%	F2, S0, W1, C1	9,000
Topping Slab (interior)	4500	28	0.40	3/8"		0.040%	F0, S0, W0, C1	6,300
							TOTAL:	39,600
			Opti	mized				
	Strength			Max Agg.			Exposure	Volume
Application	(psi)	Day	w/cm	Size	Air	Shrinkage	Class	(yds)
Application Footings	(psi) 4000	Day 56	w/cm	Size 1"	Air	Shrinkage	F0, S0, W1, C1	(yds) 4,200
			w/cm		Air	Shrinkage		
Footings Walls (interior)	4000	56	w/cm 0.45	1"	Air 4.5% ± 1.5%	Shrinkage	F0, S0, W1, C1	4,200
Footings	4000 5000	56 56	·	1" 3/4"		Shrinkage	F0, S0, W1, C1 F0, S0, W0, C1	4,200 3,500
Footings Walls (interior) Walls (exterior)	4000 5000 5000	56 56 56	·	1" 3/4" 3/4"		Shrinkage 0.045%	F0, S0, W1, C1 F0, S0, W0, C1 F2, S0, W1, C1	4,200 3,500 2,600
Footings Walls (interior) Walls (exterior) Columns (interior)	4000 5000 5000 5000	56 56 56 56	·	1" 3/4" 3/4" 3/4"			F0, S0, W1, C1 F0, S0, W0, C1 F2, S0, W1, C1 F0, S0, W0, C1	4,200 3,500 2,600 1,800

F2, S0, W1, C1


Topping Slab (interior)

*Changes highlighted

45

39,600

CONSTRUCTION YOUR TAGLINE HERE EMBODIED CARBON FOOTPRINT					CONCRETE MIX REQUIREMENTS PER SPECS								
MIX TYPES	EPD Available Y/N	Global Warming Potential (GWP)	Total GWP	TOTAL CY	Cost (\$/CY)	STRENGTH (PSI)	SPECIFIED STRENGTH (DAYS)	EARLY STRENGTH (IF PT)	SLUMP (IN)	MAX (W/CM)	AGG SIZE (IN)	MAX OPC (LB/CY)	SCM (%)
Rat Slab	Y	160 kgCO2e/yd3	49,600 kgCO2e	310 CY		3,000	56 days		4"	0.45	1/2"	200	50-70
Tower Crane Foundation	Y	192 kgCO2e/yd3	28,800 kgCO2e	150 CY		6,000	56 days	4500 5-days	5"	0.45	1"	200	50-70
Mat Slab & Footings & Grade Beams	Y	175 kgCO2e/yd3	703,500 kgCO2e	4,020 CY		6,000	56 days		5"	0.45	1"	200	50-70
Slab on Grade & Curbs & B.U.S.	Y	175 kgCO2e/yd3	35,000 kgCO2e	200 CY		6,000	56 days		6"	0.45	3/4"	200	50-70
Mild Steel Decks/Beams - L2	Y	192 kgCO2e/yd3	48,000 kgCO2e	250 CY		8,000	56 days		6"	0.45	3/4"	300	30-60
PT Decks/Beams	Y	260 kgCO2e/yd3	1,076,400 kgCO2e	4,140 CY		6,000	56 days	4500 4-days	6"	0.45	3/4"	300	30-60
Ltwt. Metal Deck Fill	Y	442 kgCO2e/yd3	44,200 kgCO2e	100 CY		3,000	56 days		6"	0.45	1/2"	200	50-70
Columns	Y	190 kgCO2e/yd3	95,000 kgCO2e	500 CY		6,000	56 days		8"-10"	0.45	3/4"	250	50-70
Shear Walls, Strength 1 - L1	Y	236 kgCO2e/yd3	82,600 kgCO2e	350 CY		10,000	56 days		8"-10"	0.45	3/4"	250	50-70
Shear Walls, Strength 2 - L2-Roof	Y	188 kgCO2e/yd3	188,000 kgCO2e	1,000 CY		8,000	56 days		8"-10"	0.45	3/4"	200	50-70
Pump Primer	N		kgCO2e	50 CY									
PROJECT TOTAL		212 kgCO2e/yd3	2,351,100 kgCO2e	11,070 CY									
MAX PER CARBON BUDGET (25% BELOW NRMCA BENCHMARK)		283 kgCO2e/yd3	3,133,050 kgCO2e										
DELTA		-71 kgCO2e/yd3	-781,950 kgCO2e										

^{**} Contractor recommended slumps. Check w/ specs, jobsite requirements and with producer

47

CALGreen - Embodied Carbon

Effective Date:

July 1, 2024

Buildings Impacted:

Nonresidental: >100,000 ft² Schools: >50,000 ft²

Compliance Paths:

- Building Reuse:
 45%+ reuse of existing structure and enclosure
- 2. Life Cycle Analysis: 10% reduction from baseline in a 60-year cradle-to-grave analysis
- 3. Prescriptive GWP: 175% maximum GWP from NRMCA benchmark values

CALGreen – Low Carbon Concrete

Prescriptive GWP Compliance Path:

- 175% maximum GWP from NRMCA benchmark values
- · Additional 130% for high early concrete applications (227.5% of benchmark)
- Concrete can be treated as one collective product (weighted average)

Verification of Compliance:

Prescriptive Path #1:

- Type III product-specific EPDs for each mix
- · Comparison to mix GWP limits

Prescriptive Path #2 (Exception):

- Type III product-specific EPDs or NRMCA industry-wide EPDs
- Calculation of GWP totals where: Total GWP_{Supplied} is less than Total GWP_{Allowed}

5.409.3 Product GWP compliance—prescriptive path. Each product that is permanently installed and listed in Table 5.409.3 shall have a Type III environmental product declaration (EPD), either product-specific or factory-specific.

5.409.3.1 Products shall not exceed the maximum GWP value specified in Table 5.409.3

Exception: Concrete may be considered one product category to meet compliance with this section. A weighted average of the maximum GWP for all concrete mixes installed in the project shall be less than the weighted average maximum GWP allowed per Table 5.409.3 using Exception Equation 5.409.3.1. Calculations shall be performed with consistent units of measurement for the material quantity and the GWP value. For the purposes of this exception, industry-wide EPDs

Concrete, Ready-Mixed ^{2, 3}								
CONCRETE PRODUCT CATEGORY	MAXIMUM GWP ALLOWED VALUE (GWP _{allowed})	UNIT OF MEASUREMENT						
up to 2499 psi	450	kg CO ₂ e/m³						
2500-3499 psi	489	kg CO ₂ e/m³						
3500-4499 psi	566	kg CO ₂ e/m³						
4500-5499 psi	661	kg CO₂e/m³						
5500-6499 psi	701	kg CO₂e/m³						
6500 psi and greater	799	kg CO₂e/m³						
Concrete	Lightweight Ready-Mixed	2						
CONCRETE PRODUCT CATEGORY	MAXIMUM GWP ALLOWED VALUE (GWP _{allowed})	UNIT OF MEASUREMENT						
up to 2499 psi	875	kg CO ₂ e/m³						
2500-3499 psi	956	kg CO ₂ e/m³						
3500-4499 psi	1039	kg CO ₂ e/m³						
		-						

49

CALGreen - Prescriptive Path #1

Examples:

Prescriptive Path #1:

Mix	Class	Application	Max GWP _{Allowed}	*GWP _{Supplied Mix}	GWP _A > GWP _S
1	4000 psi	Foundations	566	225	Yes
2	6000 psi	Columns/Walls	701	375	Yes 🗸
3	5000 psi	Slabs	661	350	Yes

* Requires Type III Product-Specific EPDs

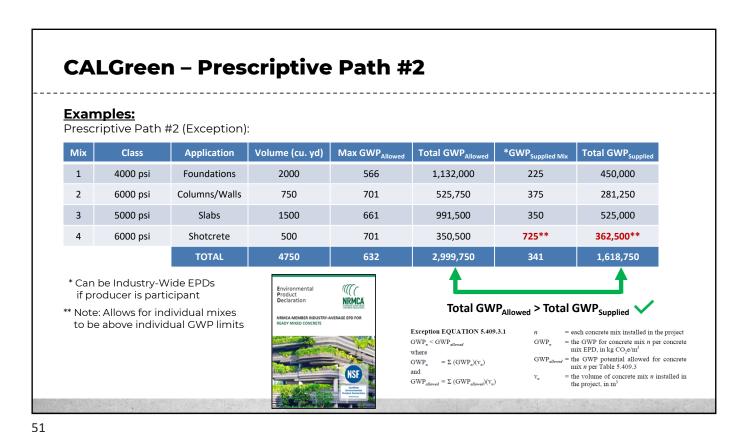


TABLE 5.409.3 PRODUCT GWP LIMITS							
Concrete, Ready-Mixed ^{2, 3}							
CONCRETE PRODUCT CATEGORY	MAXIMUM GWP ALLOWED VALUE (GWP _{allowed})	UNIT OF MEASUREMENT					
up to 2499 psi	450	kg CO ₂ e/m³					
2500–3499 psi	489	kg CO ₂ e/m³					
3500-4499 psi	566	kg CO ₂ e/m³					
4500–5499 psi	661	kg CO ₂ e/m³					
5500-6499 psi	701	kg CO ₂ e/m³					
6500 psi and greater	799	kg CO ₂ e/m³					
Concrete,	Lightweight Ready-Mixed	2					
	MAYIMIIM GWD						

CONCRETE PRODUCT CATEGORY	MAXIMUM GWP ALLOWED VALUE (GWP _{allowed})	UNIT OF MEASUREMENT
up to 2499 psi	875	kg CO ₂ e/m³
2500-3499 psi	956	kg CO ₂ e/m³
3500-4499 psi	1039	kg CO ₂ e/m³

- The GWP values of the products listed in Table 5-409.3 are based on 175 percent of Buy Clean California Act (BCCA) GWP values, except for concrete products which are not included in the BCCA.

 2. For concrete, 175 percent of the National Ready Mixed Concrete Association (NRMCA) 2022 version 3 Pacific Southwest regional
- benchmark values are used for the GWP allowed, except for High Early
- Concrete High Early Strength ready-mixed shall be calculated at 130 percent of the ready-mixed concrete GWP allowed values for each product category.

Low Carbon

Concrete Codes

NRMCA's Concrete Carbon Calculator

Colin Lobo: clobo@nrmca.org

Executive VP, Engineering

Brandon Wray: bwray@nrmca.org

Senior Director, Building Innovations

