

Environmental Product Declaration

St Marys Cement, McInnis Plant

About this EPD

This document is a Type III Environmental Product Declaration (EPD) describing various cements produced by Votorantim Cimentos North America (VCNA) - St Marys Cement at its McInnis cement plant at Port-Daniel-Gascons, QC. The results of the underlying LCA are computed with the North American (N.A.) version of the Global Cement and Concrete Association (GCCA) Industry EPD tool for cement and concrete [1]. This tool and the underlying LCA model and database have been previously verified to conform to the prevailing sub-product category rule (PCR) [2], ISO 21930:2017 (the core PCR) [3] as well as ISO 14025:2006 [4] and ISO 14040/44:2006 LCA standards [5], [6]. This Environmental Product Declaration (EPD) is intended for business-to-business audiences.

General Summary

EPD Commissioner and Owner

VCNA - St Marys Cement

55 Industrial St.
Toronto, ON M4G 3W9
<http://www.stmaryscement.com>

The McInnis plant provided both LCI and meta-data for clinker production and cement manufacture for reference year 2024. McInnis also completed the LCA modeling within the GCCA EPD tool. The owner of the declaration is liable for the underlying information and evidence.

Product Group and Name

Cement, UN CPC 3744.

Product Definition

Blended cement is a hydraulic cement consisting of two or more inorganic constituents (at least one of which is not portland cement or portland cement clinker) which separately or in combination contribute to the strength gaining properties of the cement, (made with or without other constituents, processing additions and functional additions, by intergrinding or other blending) (ASTM C595, AASHTO M 240, CSA A3001) [8].

- Type IL GUL— is a Portland-limestone cement (PLC) and is a hydraulic cement in which the interground limestone content is more than 5% but less than or equal to 15% by mass of the blended cement.
- Type IL (HE) / HEL – is a hydraulic high early cement in which the interground limestone content is more than 5% but less than or equal to 15% by mass of the blended cement.

Product Category Rules (PCR)

NSF International, Product Category Rules for Preparing an Environmental Product Declaration for Portland, Blended Hydraulic, Masonry, Mortar, and Plastic (Stucco) Cements, V3.2, September 2021 [2].

Date of Issue & Validity Period

11/24/2025 – 5 years through 11/23/2030

Declared Unit

1 metric ton of cement

EPD and Project Report Information

Program Operator	National Ready Mixed Concrete Association (NRMCA) 66 Canal Center Plaza, Suite 250 Alexandria, VA 22314 https://www.nrmca.org
Declaration Number	NRMCAEPD:20275
Declaration Type	Cradle-to-gate (modules A1 to A3). Facility and product-specific.
Applicable Countries	United States and Canada
Product Applicability	Portland cement is the basic ingredient of concrete. Concrete, one of the most widely used construction materials in the world, is formed when portland cement creates a paste with water that binds with sand and rock to harden.
Content of the Declaration	This declaration follows Section 9; Content of an EPD, NSF International, Product Category Rules for Preparing an Environmental Product Declaration for Portland, Blended Hydraulic, Masonry, Mortar, and Plastic (Stucco) Cements, V3.2, September 2021 [2].
Additional Explanatory Material	Manufacturer Representative: Shawn Kalyn (shawn.kalyn@vcimentos.com). This EPD was prepared using the pre-verified GCCA EPD Tool.
This EPD was independently verified by NRMCA in accordance with ISO 14025 and the reference PCR:	Joseph Geibig, joseph@ecoform.com Ecoform
Internal <input type="checkbox"/>	External <input checked="" type="checkbox"/>

EPD
Prepared
by:

Athena Sustainable Materials Institute
280 Albert Street, Suite 404
Ottawa, Ontario, Canada K1P 5G8
info@athenasmi.org
www.athenasmi.org

PCR Information

Program Operator	NSF International
Reference PCR	Product Category Rules for Preparing an Environmental Product Declaration for Portland, Blended Hydraulic, Masonry, Mortar, and Plastic (Stucco) Cements, V3.2, September 2021 [2].
PCR review was conducted by:	Thomas P. Gloria, PhD (Chair), Industrial Ecology Consultants, Mr. Jack Geibig, EcoForm Mr. Bill Stough, Sustainable Research Group

St Marys Cement & Production Facility

The McInnis cement plant is part of the North American operations of international building materials supplier, Votorantim Cimentos. As one of the top cement producers in the world, Votorantim Cimentos operates in 9 countries in North America, South America, Europe, Asia, and Africa, with over 30 million tons of cement sold per annum globally. Votorantim Cimentos and St Marys Cement symbolize a long heritage of excellence and commitment to both the construction industry and a sustainable future. St Marys Cement manufactures a variety of cement for different purposes - normal, high-early strength, low heat hydration, and sulphate-resisting as well as other supplementary cementitious products - in bulk and as bagged product. St Marys Cement supplies cement to customers across the Great Lakes region through an integrated, intermodal distribution network serviced by barge, rail and truck. Using state-of-the-art technology, the McInnis plant is the newest in Canada. It is the only plant in Canada designed to meet the 2015 National Emission Standards for Hazardous Air Pollutants (NESHAP) for new plants as established by the United States Environmental Protection Agency (EPA).

Facility Name: McInnis Plant
 50 Route 132
 Port-Daniel, QC
 G0C 2N0

Product Description

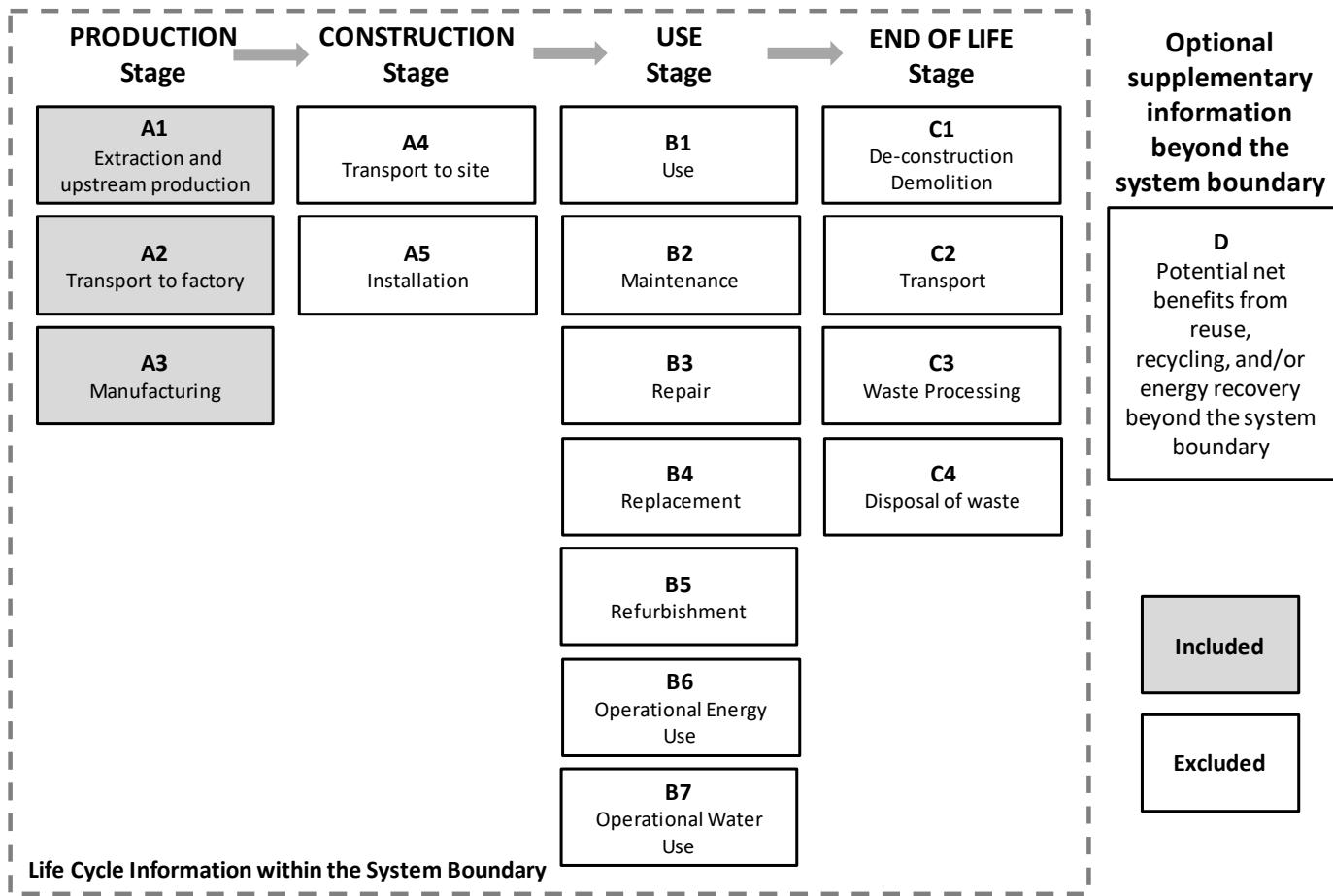
This EPD reports environmental transparency information for Portland Limestone Cement, General Use and High-Early Cements, produced by VCNA - St Marys Cement at its McInnis plant. Cements are hydraulic binders and are manufactured by grinding cement clinker and other main or minor constituents into a finely ground, usually grey colored mineral powder. When mixed with water, cement acts as a glue to bind together the sand, gravel or crushed stone to form concrete, one of the most durable, resilient and widely used construction materials in the world. The Table below sets out each cement type constituents and applicable standards.

Products and Standard

Inputs	PLC Type IL, GUL	Blended Type IL(8) (HE), HEL
Clinker	83%	88%
Gypsum	4%	4%
Limestone/IPA*	13%	8%
Others	<1%	<1%
Total	100%	100%

*IPA, Inorganic Process Addition

Applicable Standards:


ASTM C595 / C595M, AASHTO M 85, CSA A3001 – Standard Specification for Blended Hydraulic Cement.

Declared Unit

The declared unit is one metric tonne of cement.

System Boundary

This EPD is a cradle-to-gate EPD covering the production stage (A1-A3) as depicted in the figure below. The production stage includes extraction of raw materials (cradle) through the manufacture of cements ready for shipment (gate). The McLinnis plant ships its cement products in bulk.

Items excluded from the system boundary include:

- Production, manufacture, and construction of manufacturing capital goods and infrastructure
- Production and manufacture of production equipment, delivery vehicles, and laboratory equipment
- Personnel-related activities (travel, furniture, and office supplies)
- Energy and water use related to company management and sales activities that may be located either within the factory site or at another location.

Cut-off Criteria

The cut-off criteria for all activity stage flows considered within the system boundary conform with section 7.1.8 of 21930. Specifically, all known mass and energy flows are included in the analysis. Material or energy flows within the product boundary that are less than 1% were included where sufficient data were available, and the material was considered to pose significant environmental impact. No collected core process data are intentionally excluded from the study. Cumulative excluded material inputs and energy flows did not exceed 5% of the total. All input/output data required were collected and included in the LCI modelling. No substances with hazardous and toxic properties that pose a concern for human health and/or the environment were identified in the framework of this EPD.

Data Collection

Gate-to-gate input/output flow data were collected for the following processes for the reference year 2024:

- clinker production and cement manufacture – McInnis Plant at Port-Daniel-Gascons, QC.

Allocation Rules

Allocation of inventory flows and subsequently environmental impact is relevant when assets are shared between product systems. The allocation method prescribed by the PCR [2] is applied in the underlying LCA model. The sub-category PCR recognizes fly ash, furnace bottom ash, bypass dust, mill scale, polluted soils, spent catalyst, aluminum oxide waste, silica fume, granulated blast furnace slag, iron rich waste, cement kiln dust (CKD), flue gas desulfurization (FGD) gypsum, calcium fluoride rich waste and postconsumer gypsum as recovered materials and thus, the environmental impacts allocated to these materials are limited to the treatment and transportation required to use as a cement material input. Further, used tires, plastics, solvents, used oil and oily waste, coal/carbon waste, roofing asphalt, household refuse-derived waste, non-hazardous liquid waste, industrial sludge, and agricultural waste are considered non-renewable and/or renewable secondary fuels. Only the materials, water, energy, emissions, and other elemental flows associated with reprocessing, handling, sorting and transportation from the point of the generating industrial process to their use in the production process are considered. All emissions from combustion at the point of use are considered. For co-products, no credit is considered, and no allocation is applied. See the LCA model and LCA database reports of the N.A. version of GCCA's Industry Tool for EPDs of cement and concrete for more information [13 &14].

Data Quality Assessment

Data Quality Requirements	Description
Technology Coverage	<p>LCI data represents the prevailing technology in use at the McInnis facility.</p> <p>The McInnis plant utilizes <i>a dry with preheater and precalciner kiln technology</i>.</p> <p><i>Technological representativeness is characterized as "high".</i></p>
Geographic Coverage	<p>The geographic region considered is the U.S and Canada.</p> <p><i>Geographical representativeness is characterized as "high".</i></p>

Time Coverage	Activity (primary) data are representative of 2024 calendar year (12 months). - McInnis plant clinker production, - McInnis plant cement manufacturing, - In-bound/ out-bound transportation data - primary data collected for McInnis cement manufacturing plant. <i>Temporal representativeness is characterized as "high".</i>
Completeness	All relevant, specific processes, including inputs (raw materials, energy and ancillary materials) and outputs (emissions and production volume) were considered and modeled in the GCCA Tool to complete production profile for Port-Daniel-Gascons, QC cement products. McInnis plant operates an emissions monitoring system and reports emissions to the National Pollution Release Inventory. The data for 2024 were drawn on in the completion of this EPD. The completeness of the foreground process chain in terms of process steps is rigorously assessed.
Consistency	To ensure consistency, cross checks of the energy demand and the calculated raw meal to clinker ratio against ranges reported in the WBCSD Cement Sustainability Initiative, Cement CO2 and Energy Protocol, v3.1 December, 2013 were conducted [15]. The LCA team conducted mass and energy balances at the facility level and selected process levels to maintain a high level of consistency.
Reproducibility	External reproducibility is not possible as the background report is confidential.
Transparency	Activity datasets are disclosed in the project LCI compilation, and the background reports generated by the GCCA Tool.
Uncertainty	A <i>sensitivity check</i> was conducted relative to the ACA industry average . The variation across significant inputs were found to be well within the expected range and hence, there is high degree of confidence in the results.

Life Cycle Impact Assessment Results: Port-Daniel Gascons, QC Cements

This section summarizes the production stage life cycle impact assessment (LCIA) results including resource use and waste generated metrics based on the cradle-to-gate life cycle inventory inputs and outputs analysis. The results are calculated based on 1 metric ton of each cement type as produced at the McInnis plant. *It should be noted that LCIA results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins or risks [2], [3]. Further, a large number of LCA impact categories and inventory items are still emerging or under development and can have high levels of uncertainty that preclude international acceptance pending further development. Use caution when interpreting results for these categories – identified with an ** [2].*

Only EPDs prepared from cradle-to-grave life-cycle results and based on the same function, quantified by the same functional unit, and taking account of replacement based on the product reference service life (RSL) relative to an assumed building service life, can be used to assist purchasers and users in making informed comparisons between products [3]. Environmental declarations from different programs may not be comparable [6]. EPDs are comparable only if they comply with ISO 21930, use the same, sub-category PCR where applicable, include all relevant information modules and are based on equivalent scenarios with respect to the context of construction works [2].

Production stage EPD Results (Table 1): McInnis Plant – per Metric Ton

Impact category and inventory indicators	Unit	PLC Type IL, GUL	Blended Type IL(8) (HE), HEL
Global warming potential, GWP 100, IPCC 2013 (AR5)	kg CO ₂ eq	741.80	781.2
Ozone depletion potential, ODP	kg CFC-11 eq	1.70E-5	1.61E-5
Acidification potential, AP	kg SO ₂ eq	1.05	0.93
Eutrophication potential, EP	kg N eq	0.19	0.14
Smog formation potential, SFP	kg O ₃ eq	20.50	20.38
Abiotic depletion potential for non-fossil mineral resources, ADP elements*	kg Sb eq	1.04E-04	1.10E-04
Abiotic depletion potential for fossil resources, ADP fossil*	MJ, net calorific value	3373	3448
Renewable primary resources used as an energy carrier (fuel), RPR _E *	MJ, net calorific value	497.60	562.30
Renewable primary resources with energy content used as material, RPR _M *	MJ, net calorific value	0	0
Non-renewable primary resources used as an energy carrier (fuel), NRPR _E *	MJ, net calorific value	3374	3448
Non-renewable primary resources with energy content used as material, NRPR _M *	MJ, net calorific value	0	0
Secondary materials, SM*	kg	52.34	7.92
Renewable secondary fuels, RSF*	MJ, net calorific value	0	0
Non-renewable secondary fuels, NRSF*	MJ, net calorific value	0	0
Net use of freshwater, NFW*	m ³	1.26	1.36
Hazardous waste disposed, HWD*	kg	0	0
Non-hazardous waste disposed, NHWD*	kg	0.08	0.09
High-level radioactive waste, conditioned, to final repository, HLRW*	kg	x¹⁾	x¹⁾
Intermediate- and low-level radioactive waste, conditioned, to final repository, ILLRW*	kg	x¹⁾	x¹⁾
Components for re-use, CRU*	kg	0	0
Materials for recycling, MFR*	kg	8.24E-02	8.88E-02
Materials for energy recovery, MER*	kg	3.30E-02	3.52E-02

Recovered energy exported from the product system, EE*	kg	0	0
Global warming potential - biogenic, GWP _{bio} *	kg CO ₂ eq	0.27	0.30
Emissions from calcination*	kg CO ₂ eq	456.50	487.50
Emissions from combustion of waste from renewable sources*	kg CO ₂ eq	0	0
Emissions from combustion of waste from non-renewable sources*	kg CO ₂ eq	0	0

¹⁾ x – The GCCA EPD Tool does not support these indicators.

^{*)} Use caution when interpreting results for these categories

LCA Interpretation

The Manufacturing module (A3) drives most of the potential environmental impacts. Manufacturing impacts are primarily driven by energy use (electricity and thermal fuels) used during the pyroprocessing of limestone in the production of clinker. Clinker content in cement similarly defines the relative environmental profile of the final cement product. Raw material extraction (A1) is the second largest contributor to the Production stage EPD results, followed by transportation (A2).

Additional Environmental Information

St Marys distribution system is accomplished through a sophisticated network of terminals throughout the Great Lakes and Eastern Region, serviced by marine vessel, rail and truck. The McInnis cement plant has multiple distribution locations post-gate transport modes and distances past the manufacture gate (A3). For more information on the distribution terminals, please, contact your manufacture representative or local terminal sales representative. St Marys has done the distance calculations for all travel modes, such as marine vessel, rail, and/or truck, to allow for downstream users LCA product calculations. The Type IL cement manufactured at the McInnis plant and distributed exclusively to the United States market through the Bronx Terminal is excluded from the scope of this Environmental Product Declaration (EPD). Consequently, the Bronx Terminal is not listed in the appendix of this document. A separate EPD has been developed to disclose the core environmental impact indicators associated with the Type IL cement shipped to the U.S. and distributed from the Bronx Terminal. Relevant Information regarding this terminal is presented in that EPD under the *Additional Environmental Information* section.

Recognizing that sustainability is a journey, we are taking another step toward building an increasingly sustainable company and thereby creating long-term value for our stakeholders. This important step is now encapsulated in the publication of our 2030 commitments. In addition to being aligned with our way of being, our 2030 commitments also encompass our climate ambition for 2050. Their development considered an in-depth assessment of megatrends such as demographic changes; globalization and future markets; climate change challenges; and innovation and technology dynamics and their impact on the building materials industry. These commitments aim to align our entire operation with the current and future needs of society, thereby generating shared value and producing a positive impact on the value chain. Please read more about our 2030 commitments at our 2024 Integrated Report at: <https://www.votorantimcimentos.com/integrated-report/>

Please note our integrated report is updated every year.

Environmental Protection Manufacture and Equipment

St Marys manufacturing facilities comply with both U.S. and Canadian environmental regulations. The McInnis / Port-Daniel-Gascons plant monitors its emission and report these emissions to the National Pollution Release Inventory managed by Environment and Climate Change Canada - <https://www.canada.ca/en/environment-climate-change/services/national-pollutant-release-inventory/report.html> and to the Quebec Ministry of the Environment - https://www.environnement.gouv.qc.ca/air/declar_contaminants/enligne/index.htm

ISO 9001 Certified. ISO 9001 certification means that this plant conforms to an international standard primarily concerned with Quality Management. The Port-Daniel-Gascons Plant adheres to these high standards with regard to fulfilling our customer's quality requirements, following applicable regulatory requirements, while aiming to enhance customer satisfaction and achieve continual improvement of its performance in pursuit of these objectives.

ISO 14001 Certified. ISO 14001 is the internationally recognized standard for environmental management of businesses. Certification to this system provides order and consistency for managing activities at the Port-Daniel-Gascons Plant that may have an impact on the environment. ISO 14001 ensures the effectiveness of prescribed controls; through the allocation of resources, assignment of responsibility and ongoing evaluation of environmental practices, procedures and processes.

ISO 14064 Certified. ISO 14064 certification conforms to an international standard concerned with quantification and reporting of greenhouse gas (GHG) emissions and removals. CO₂ emissions are reported to the cap-and-trade system.

References

1. Global Cement and Concrete Association (GCCA) 2023. *N.A. version of Industry EPD tool for Cement and Concrete*. <https://concrete-epd-tool.org/>
2. NSF International, Product Category Rule Environmental Product Declarations, PCR for Portland, Blended, Masonry, Mortar, and Plastic (Stucco) Cements, V3.2, September 2021.
3. ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products and services.
4. ISO 14025:2006 Environmental labeling and declarations - Type III environmental declarations - Principles and procedures.
5. ISO 14040:2006/Amd1:2020 Environmental management - Life cycle assessment - Principles and framework.
6. ISO 14044:2006/Amd1:2017/Amd2:2020 Environmental management - Life cycle assessment - Requirements and guidelines.
7. ASTM C150 / C150M, AASHTO M 85, CSA A3001 – Standard Specification for Portland Cement.
8. ASTM C595 / C595M, AASHTO M 85, CSA A3001 – Standard Specification for Blended Hydraulic Cement.
9. ASTM C91, CSA A3002 – Standard Specification for Masonry Cement.
10. NSF International, Product Category Rule Environmental Product Declarations, PCR for Concrete, February 2020.
11. ISO 14020:2000 Environmental labels and declarations – General Principles.
12. ISO 14021:2016 Environmental labels and declarations -- Self-declared environmental claims (Type II environmental labelling).
13. GCCA and PCA, *GCCA Industry EPD Tool for Cement and Concrete (v4.2), LCA Model, North American version*, Prepared by Quantis, December 2023.
14. Global Cement and Concrete Association (GCCA). *LCA Database, North American version*, Prepared by Quantis, December, 2023.
15. WBCSD CSI 2013: CO₂ and Energy Protocol Version 3.1 of 9 December 2013. <https://www.cement-co2-protocol.org/en/>
16. NRMCA, General Program Instructions for Environmental Product Declarations, v2.0 (June 2019-May 2024).
17. GCCA and PCA, *GCCA Industry EPD Tool for Cement and Concrete (V3.0), Users Manual, North American version*, Prepared by Quantis, April 2021.
18. U.S. EPA, Emissions & Generation Resource Integrated Database (eGRID) <https://www.epa.gov/egrid>, accessed October 2020.
19. GCCA and PCA, *GCCA Industry EPD Tool for Cement and Concrete (V3.0), LCA Model, North American version*, Prepared by Quantis, April 2021.

Post-gate transport modes and distances

McInnis Plant, Port-Daniel Gascons, QC

Cements: Type IL and Type IL (HE)

This document constitutes an appendix to the St Marys Cement McInnis Plant's Environmental Product Declaration (No. NRMCAEPD: 20275). It provides information on the company-owned distribution terminals to which products are transported following their release from the cement plant gate. The cements Type IL and Type IL (HE) manufactured at the McInnis Plant are distributed to several terminals either by marine vessel, truck, and/or rail.

The following list presents each company-owned terminal receiving Type IL and Type IL (HE) cement products from the McInnis Plant, along with a table presenting the percentage of supply that is received by the respective transport mode at the terminal, followed by the post-gate transport mode itself, the distance from the cement plant gate, and the terminal respective address. The transport modes and distances out of the terminals are usually controlled by customers and thus are referenced as "TBD (to be defined) by the end user".

St. Catherine Terminal

In 2024, reference year of the McInnis, QC cement plant EPD (No. NRMCAEPD: 20275), St. Catherine Terminal received cement Type IL by marine vessel. Table 1 shows the details.

Table 1: Post-gate transport mode and distance from McInnis Plant to St. Catherine Terminal.

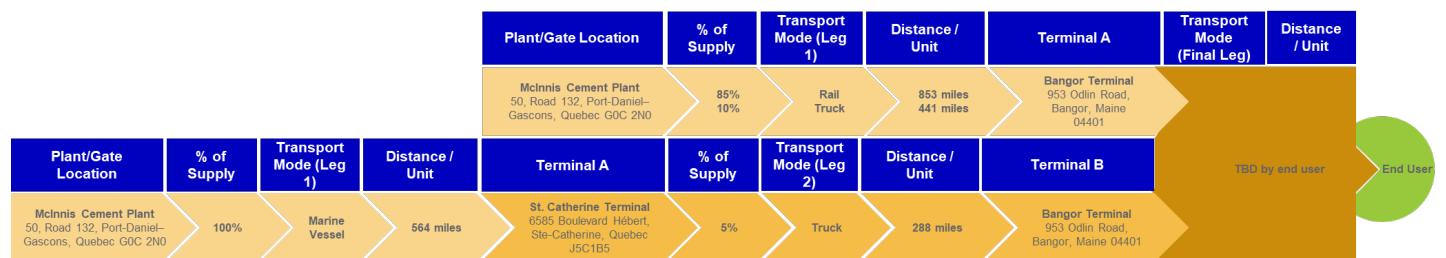
Oshawa Terminal

Oshawa Terminal received cement Type IL by marine vessel. Table 2 presents the details.

Table 2: Post-gate transport mode and distance from McInnis Plant to Oshawa Terminal.

Providence Terminal

Providence Terminal received, in 2024, both cement Type **IL** and Type **IL (HE)** by marine vessel. Table 3 presents the details.


Table 3: Post-Gate transport mode and distance to the Providence Terminal.

Bangor Terminal

Bangor Terminal received, in 2024, cement Type **IL**, originated primarily from the McInnis, QC cement plant, but also through the St. Catherine Terminal. The details are presented on Table 4.

Table 4: Post-Gate transport modes and distances to the Bangor Terminal.

Bedford Terminal

Bedford Terminal received cement Type **IL** by truck and/or rail. The details are presented on Table 5.

Table 5: Post-Gate transport modes and distances to the Bedford Terminal.

Moncton Terminal

Moncton Terminal received cement Type **IL** by truck in 2024. Table 6 shows the details.

Table 6: Post-Gate transport mode and distance from McInnis Plant to Moncton Terminal.

For further explanation or questions, please reach out to your manufacturer representative or directly to Natalia Fontoura, Sustainability Specialist (natalia.fontoura@vcimentos.com) or Shawn Kalyn, (shawn.kalyn@vcimentos.com). Thank you for choosing St Marys Cement products.

Shawn Kalyn, B.eng LEED AP bd+c
Sustainability and Technical Marketing – North America

Cleveland Terminal Ohio Sales Office
Mobile: 216 308 8490
shawn.kalyn@vcimentos.com
250 Jefferson Ave
Cleveland Ohio 44011

Votorantim Cimentos
www.votorantimcimentos.com

Post-gate transport modes and distances

McInnis Plant, Port-Daniel Gascons, QC

Cements: Type **GUL** and Type **HEL**

This document constitutes an appendix to the St Marys Cement McInnis Plant's Environmental Product Declaration (No. NRMCAEPD: 20275). It provides information on the company-owned distribution terminals to which products are transported following their release from the cement plant gate. The cements Type GUL and Type HEL manufactured at the McInnis Plant are distributed to several terminals either by marine vessel, truck, and/or rail.

The following list presents each company-owned terminal receiving Type GUL and Type HEL cement products from the McInnis Plant, along with a table presenting the percentage of supply that is received by the respective transport mode at the terminal, followed by the post-gate transport mode itself, the distance from the cement plant gate, and the terminal respective address. The transport modes and distances out of the terminals are usually controlled by customers and thus are referenced as "TBD (to be defined) by the end user".

St. Catherine Terminal

In 2024, reference year of the McInnis, QC cement plant EPD (No. NRMCAEPD: 20275), St. Catherine Terminal received cement Type **GUL** by marine vessel. Table 1 shows the details.

Table 1: Post-gate transport mode and distance from McInnis Plant to St. Catherine Terminal.

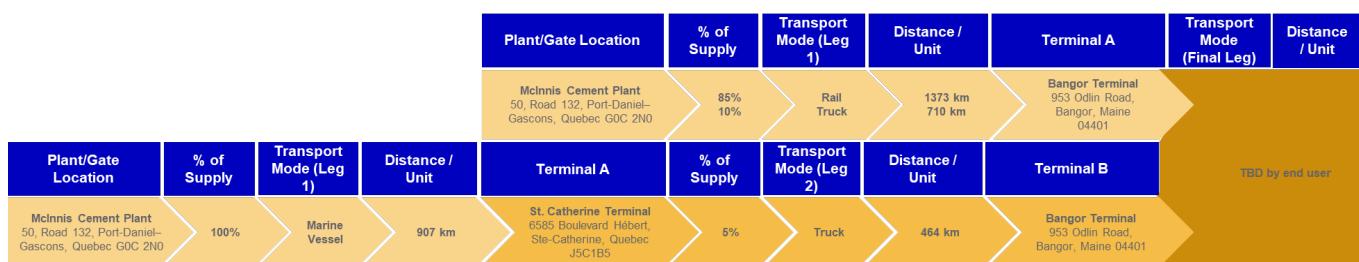
Oshawa Terminal

Oshawa Terminal received cement Type **GUL** by marine vessel. Table 2 presents the details.

Table 2: Post-gate transport mode and distance from McInnis Plant to Oshawa Terminal.

Providence Terminal

Providence Terminal received, in 2024, both cement Type **GUL** and Type **HEL** by marine vessel. Table 3 presents the details.


Table 3: Post-Gate transport mode and distance to the Providence Terminal.

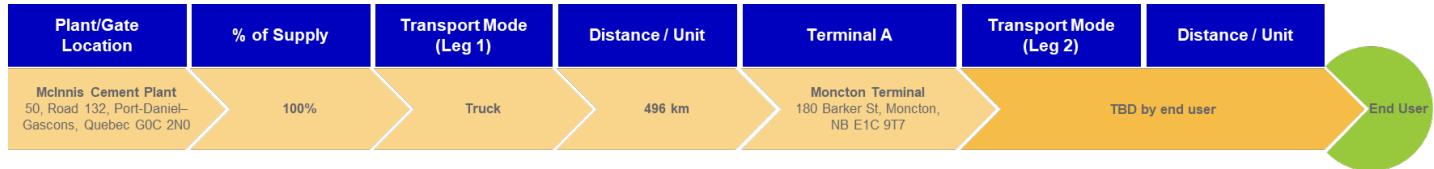
Bangor Terminal

Bangor Terminal received, in 2024, cement Type **GUL**, originated primarily from the McInnis, QC cement plant, but also through the St. Catherine Terminal. The details are presented on Table 4.

Table 4: Post-Gate transport modes and distances to the Bangor Terminal.

Bedford Terminal

Bedford Terminal received cement Type **GUL** by truck and/or rail. The details are presented on Table 5.


Table 5: Post-Gate transport modes and distances to the Bedford Terminal.

Moncton Terminal

Moncton Terminal received cement Type **GUL** by truck in 2024. Table 6 shows the details.

Table 6: Post-Gate transport mode and distance from McInnis Plant to Moncton Terminal.

For further explanation or questions, please reach out to your manufacturer representative or directly to Natalia Fontoura, Sustainability Specialist (natalia.fontoura@vcimentos.com) or Shawn Kalyn, (shawn.kalyn@vcimentos.com). Thank you for choosing St Marys Cement products.

Shawn Kalyn, B.eng LEED AP bd+
Sustainability and Technical Marketing – North America

Cleveland Terminal Ohio Sales Office
Mobile: 216 308 8490
shawn.kalyn@vcimentos.com
250 Jefferson Avenue
Cleveland Ohio 44011

Votorantim Cimentos
www.votorantimcimentos.com

