Sustainable Concrete Solutions in Practice

Bill Fee - Thomas Concrete
Drew Flemming - US Concrete
Shaun Heimerman - Master Builders Solutions
Sustainability

- In the true sense is protection of your business by pursuing initiatives that reduce risk – environmental risk, human capital risk, social risk, economic risk
Overview of Case Studies

- Use of carbon Infusion and liquid strength enhancer as an added strength development to reduce cement and labor.
- Use of a powdered polymer admixture to recycle fresh returned concrete into a reusable aggregate source.
Strength Enhancement
Strength Enhancers- GWP Results

Mix design specifics

- Mixes A and B - reference mixes
- Mixes Acc and Bcc - Mixes with CO2 injection have a 20 lb. cement reduction
- Mixes Axs and Bxs - Mixes with 7 oz/cwt of liquid strength enhancer have a 50 lb. cement reduction

![Global Warming Potential, kg CO2e-Life Cycle Stages](chart.png)
Cement Reduction by use of Strength Enhancers

Based from 2 plants at 100,000 yards

4000 psi reference mix (mix A)
352.5 kg co2/yard

- Carbon Infusion (mix Acc)
 - 20 lb. cement reduction/yard
 - 321.4 kg co2/yard (9% reduction)
 - 3,100,000 kg co2 savings
 - Equivalent to carbon sequestered by 3,800 acres of trees

- Liquid strength enhancer (Mix Bxs)
 - 50 lb. cement reduction/yard
 - 294.6 kg co2/yard (16.5% reduction)
 - 5,700,000 kg co2 savings
 - Equivalent to carbon sequestered by 7010 acres of trees

Production gains
- 47 tanker loads of cement eliminated
- gained 285 man hrs/yr

Production gains
- 119 tanker loads of cement eliminated
- gained 714 man hrs/yr
Cement Reduction by use of Strength Enhancers

Based from 10 plants at 600,000 yards

5000psi reference mix (Mix B)
417.3 kg co2/yd

- Carbon infusion (Mix Bcc)
 - 20 lb. cement reduction /yard
 - 381.8 kg co2/yard (8.5% reduction)
 - 21,300,000 kg co2 savings
 - Equivalent to carbon sequestered by **26,000** acres of forest

- Liquid strength enhancer (Mix Bsx)
 - 50 lb. cement reduction/yard
 - 354.9 kg co2/yard (15% reduction)
 - 37,400,000 kg co2 savings
 - Equivalent to carbon sequestered by **46,000** acres of forest

Production gains

- 285 tanker loads of cement eliminated
- gained 1714 man hrs/yr

- 714 tanker loads of cement eliminated
- gained 4285 man hrs/yr
Concrete returns to batch plant. Determine the volume of the returned concrete.

That day: Flatten the treated piles. Next day: Mix and turn the treated concrete piles.

Driver adds admixture. Mixes for about two minutes.

Discharge the treated concrete onto the ground in piles.

Treated material sold or reused into concrete.

Powdered Polymer Admix for Returned Concrete Treatment
Returned Concrete - GWP Results

Mix design specifics

• Mix F1 - Reference mixture (3000 PSI)

• Mix F2 - Replacement of virgin aggregate with Returned concrete as aggregate replacement - 20%

• Mix F3 - Cement reduction of 4% and aggregate replacement of 20%.
Recycled Aggregate Material Case Study

Based from 4 rural plants at 265,000 yards

5500 yards produced 2.1% of total production

Reference 3000psi mix 217 kg of co2/yard

- 20% recycled agg replacement
 - 213.7 kg co2/yard (1.5% reduction)
 - 5500 yards recycled agg produces 25k yards of concrete
 - 82,000 kg co2 savings

 Equivalent to carbon sequestered by **101** acres of forest per year

- 20% recycled agg replacement and 4% cement reduction
 - 210.2 kg co2/yard (3.1% reduction)
 - 5500 yards of recycled agg produces 25k yards of concrete
 - 170,000 kg co2 savings

 Equivalent to carbon sequestered by **210** acres of trees per year

Production gains

- 659 man hrs gained vs crushing

- 825 man hrs gained vs hauling of site

Production gains

- 679 man hrs gained vs crushing

- 843 man hrs gained vs hauling of site
Conclusion

- Environmental risk - all case studies use less raw materials to make the same performance concrete.

- Human capital risk - all case studies reduce labor while making the same performance concrete.

- Social risk - all case studies positively promote further use of concrete through less depletion of our natural resources.

- Economic risk - all case studies have a positive impact by reducing material and labor cost.