2.0 Developing Industry Leaders

- Offers a limited number of company-nominated middle managers the unique opportunity to network with peers and senior leaders from across the country while also learning about issues, and solutions, facing the ready mixed concrete industry.
- This Year's DIL Group:
 - Comparing Tools for Carbon Reduction Whole Building Concrete GWP
 - Daniel Corneau, Aggregate Industries
 - Justin Walker, Titan America
 - Leighton Reynolds, Bayou Concrete
 - Frank Russo-Alesi, Preferred Materials
 - James Bogdan, NRMCA Liaison

Comparing Tools for Carbon Reduction - Whole Building Concrete GWP

Presented by: Justin Walker -Roanoke Cement -Princeton WV

Leighton Reynolds -Bayou Concrete -Gulfport MS

Frank Russo-Alesi -Preferred Materials -St. Petersburg FL

Dan Corneau -Aggregate Industries - Denver CO

Architect John A. Bodziak St. Petersburg Fl.

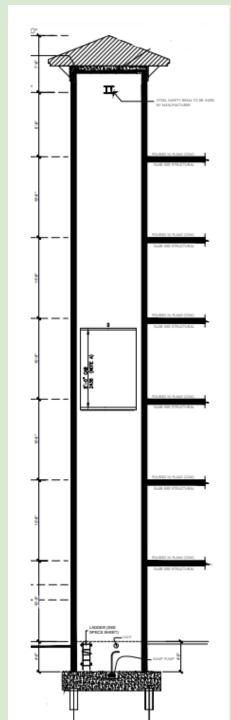

Justin Walker, Roanoke **Cement/Titan America** Princeton, WV.

Frank Russo-Alesi -Preferred Materials - St. Petersburg FL

Leighton Reynolds -Bayou Concrete -Gulfport MS

Dan Corneau - Aggregate Industries - Denver CO

NRMCA Promotions Committee - Sustainability Team 2021 DIL Project



Introduction to the Comparison

Calculating the embodied carbon represented in the concrete for a new construction project could be paramount to the success of the industry in very soon. Many producers are already making a Net 0 pledge for a future date. The ability to quantify CO2 reduction levels by comparing benchmark mix designs for various concrete elements to the same elements using CO2 reduced mix designs is how reduction capacity is measured. There are currently a number of tools available to make those calculations, so the GWP comparisons can be made. This presentation will demonstrate concrete CO2 reduction compared to benchmark CO2 for a mid-rise residential project but also compare two different tools for estimation of GWP. The EC3 tool and the Athena Impact Estimator.

John A Bodziak Architect AIA

The Process:

- Identify a low to mid-rise building project that utilizes various concrete elements and where the project is located regionally
- Identify the building concrete elements, required compressive strength of concrete for each element, and total volume required for each element
- Use the NRMCA Industry Wide average report to identify GWP for benchmark mixes for the project concrete elements in the project region
- Identify the reduced carbon mixes for each of the project concrete elements
- Use the EC3 carbon calculator tool to produce a second set of GWP numbers for the same set of the project concrete elements for the reduced CO2 concrete mixes.
- Use the Athena Impact Estimator tool to report on GWP numbers for each of the project concrete elements for benchmark and reduced CO2 concrete mixes
- Compare baseline mix results with reduced carbon mixes for total GWP reduction, and compare the two calculators used for similarities or differences
- Based on the total GWP reduction, make a suggestion for a way to go about specification for GWP reduction on the project level for engineers or architects.

The (fictitious) Project:

- 6 story residential
- Great Lakes Region
- Foundations 950cy 3000psi
- Columns/Shear Walls 650cy 6000psi
- SOG 300cy 4000psi
- Slabs on Deck 1450cy 5000psi

Architect John A. Bodziak St. Petersberg Fl.

NRMCA IW Average Benchmark Mix Data:

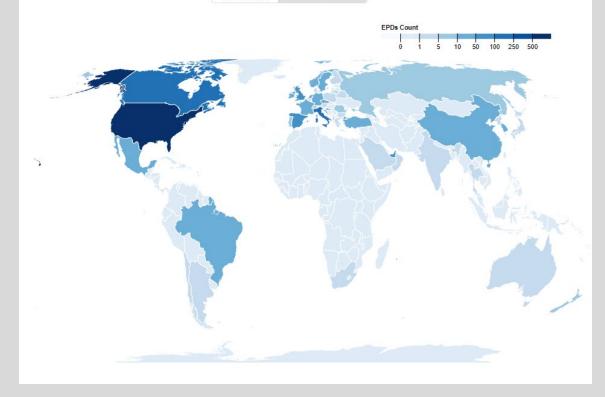
Table B3-Great Lakes Midwest Benchmark Mix Designs (per cubic yard)										
								3000	4000	5000
Compressive Strength	psi	2500	3000	4000	5000	6000	8000	LW	LW	LW
Portland Cement	lbs	341	382	468	576	611	733	383	468	556
Fly Ash	lbs	39	44	54	67	71	85	44	54	64
Slag Cement	lbs	24	27	33	41	44	52	27	33	40
Mixing Water	lbs	267	267	267	276	300	300	271	271	271
Crushed Coarse Aggregate	lbs	1,517	1,489	1,445	1,387	1,431	1,373	0	0	0
Natural Coarse Aggregate	lbs	245	240	233	224	231	221	0	0	0
Crushed Fine Aggregate	lbs	14	14	14	13	14	13	14	12	11
Natural Fine Aggregate	lbs	1,460	1,432	1,390	1,335	1,376	1,321	1,371	1,248	1,138
Man.Lightweight Aggregate	lbs	0	0	0	0	0	0	1,050	1,070	1,080
Air %	%	6%	6%	6%	6%	6%	0	6%	6%	2%
Air Entraining Admixture	oz	1	1	1	1	1	1	1	1	0
Plasticizer & Superplasticizer	OZ	3	3	3	7	3	3	3	7	7
Set Accelerator	oz	25	20	15	10	25	20	15	10	10
Total Weight	lbs	3,908	3,895	3,905	3,919	4,076	4,098	2,110	2,087	2,080

Great Lakes Region Benchmark Mix Data

Information from: Appendix D: NRMCA Member National and Regional LCA Benchmark (Industry Average) Report – V 3.0 from November 2019

Strength	psi @28 days	2,500	3,000	4,000	5,000	6,000	8,000	3000LW	4000LW	5000LW
Core Mandat	ory Impact Indicato	r								
GWP	kg CO2e	192.43	211.66	252.63	304.40	321.68	380.19	401.57	445.91	489.97
ODP	kg CFC11e	5.17E-06	5.66E-06	6.71E-06	8.03E-06	8.49E-06	9.98E-06	1.50E-05	1.63E-05	1.74E-0
AP	kg SO2e	0.68	0.73	0.84	0.97	1.02	1.16	2.02	2.15	2.27
EP	kg Ne	0.23	0.25	0.30	0.36	0.38	0.45	0.71	0.76	0.82
SFP	kg O3e	14.22	15.17	17.22	19.80	20.83	23.76	25.81	28.01	30.18
ADPf	MJ, NCV	978.01	1,071.94	1,276.27	1,538.32	1,625.82	1,922.96	2,732.57	2,972.04	3,205.9
ADPe	kg Sbe	2.01E-04	2.13E-04	2.39E-04	2.71E-04	2.85E-04	3.22E-04	2.58E-04	2.87E-04	3.16E-0
FFD	MJ Surplus	103.35	107.87	118.62	132.88	138.87	155.27	205.50	218.55	231.68
Use of Prima	y Resources	•	•	•				•	•	
RPRE	MJ, NCV	50.60	55.92	67.34	81.96	86.74	103.20	285.25	301.16	315.44
RPRM	MJ, NCV	0.00	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00
NRPRE	MJ, NCV	1,349.29	1,450.64	1,673.13	1,958.14	2,060.62	2,384.52	3,295.44	3,555.14	3,808.8
NRPRM	MJ, NCV	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Secondary M	aterial, Secondary F	uel and Recov	ered Energy							
SM	kg	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
RSF	MJ, NCV	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NRSF	MJ, NCV	72.50	81.21	99.54	122.56	129.89	155.89	81.43	99.57	118.27
RE	MJ, NCV	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mandatory In	ventory Parameter	s								
FW	m3	2.73	2.90	3.28	3.80	4.06	4.59	3.16	3.54	3.93
CCE	kg CO2e	74.91	83.91	102.85	126.64	134.21	161.08	84.14	102.89	122.21
Indicators De	scribing Waste	•	•	•				•		
HWD	kg	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
NHWD	kg	7.37	7.37	7.37	7.37	7.37	7.37	7.37	7.37	7.37
HLRW	m3	1.03E-06	1.01E-06	9.90E-07	9.61E-07	9.83E-07	9.54E-07	4.79E-07	4.65E-07	4.53E-0
LLRW	m3	1.14E-06	1.12E-06	1.10E-06	1.06E-06	1.09E-06	1.06E-06	2.17E-06	2.19E-06	2.19E-0
CRU	kg	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MR	kg	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MER	kg	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
EE	MJ, NCV	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	l						·			L

Benchmark Mix Designs - NRMCA


Concrete Element	Volume	Mix PSI	Portland Type I/II	Slag (lbs)	Fly Ash (lbs)	Total Cementitious	Benchmark GWP kgCO2e	Total CO2 / element
Foundations	950	3000	382	27	44	453	211.66	201077
Columns / Shear Walls	650	6000	611	44	71	726	321.68	209092
SOG	300	4000	468	33	54	555	252.63	75789
SOD	1450	5000	576	41	67	684	304.4	441380

Benchmark Embodied Carbon Project Total = 927,338 kg

Embodied Carbon in Construction Calculator (EC3)

- EDP Database
- Domestic & International
- Calculate embodied carbon for complete buildings
- Compare manufacturers and suppliers
- EPD's for various building materials

Building Design & Data

Project Name * Building Use Residential.Multi-Unit Project address Michigan Center, MI, United States Map Satellite Pennfield Charter Twp	
Michigan Center, MI, United States	
Battle Creek Chelsea Westland Detroit Marshall Albion Jackson Ann Arbor Portage 60 Homer Vicksburg 60 Homer 12 Brooklyn 12	14.2

BUILDING CLASSIFICATION

REFERENCE & COMPARISON

▶ SAMPLE SUPPLIER DOCUMENTS

EC Intensity (Conservative)	EC Total (Conservative)	Floors	Gross Floor Area
26.3 kgCO2e / ft2	1.66M kgC02e	6 Stories	63,000 ft2
EC Intensity (Achievable)	EC Total (Achievable)		Floor Area Above Grade
12.0 kgCO2e / ft2	756k kgC02e	Height	63,000 ft2
EC Intensity (Realized)	EC Total (Realized)	Weight	Floor Area Below Grade
26.3 kgCO2e / ft2	1.66M kgCO2e	11.6M lbs	0 ft2

Building Elements

Shell	× *			F	Realized	•	1.22M	kgCO2e	0
@B1 Co	lumns & Shear Walls 🛛 🛛 👻 🔻				Realized	T	317k	kgCO2e	0
Cell	Name *	Мар	Collection Selected Material *	Quantity	Unit	Realized 👻	%	Notes	
@B1A 🗎	CLMN/WALLS	Q Search	ReadyMix: USA MI, MN, WI 🗎 前	650	× yd3	317k kgCO2e	100 %	12	0
+ Add Eleme	ent 🖪 Add Multi-Material Element								
@B2 Sla	b on Grade 🛛 👻 🔻]			Realized	×	154k	kgCO2e	0
Cell	Name *	Мар	Collection Selected Material *	Quantity	Unit	Realized 💌	%	Notes	
@B2A 🗎	SOG	Q Search	ReadyMix: USA MI, MN, WI 🗎 前	300	× yd3	154k kgCO2e	100 %	D	0
Add Eleme	ent 🖬 Add Multi-Material Element								
@B3 Sla	b on Deck 🛛 👻 👻]			Realized	•	748k	kgCO2e	0
Cell	Name *	Мар	Collection Selected Material *	Quantity	Unit	Realized 📼	%	Notes	
@B3A 🗎	DECKS	Q Search	ReadyMix: USA MI, MN, WI 🗎 前	1,450	× yd3	748k kgCO2e	100 %	D	0
Add Eleme	ent 🗄 Add Multi-Material Element								

Element Data Entry

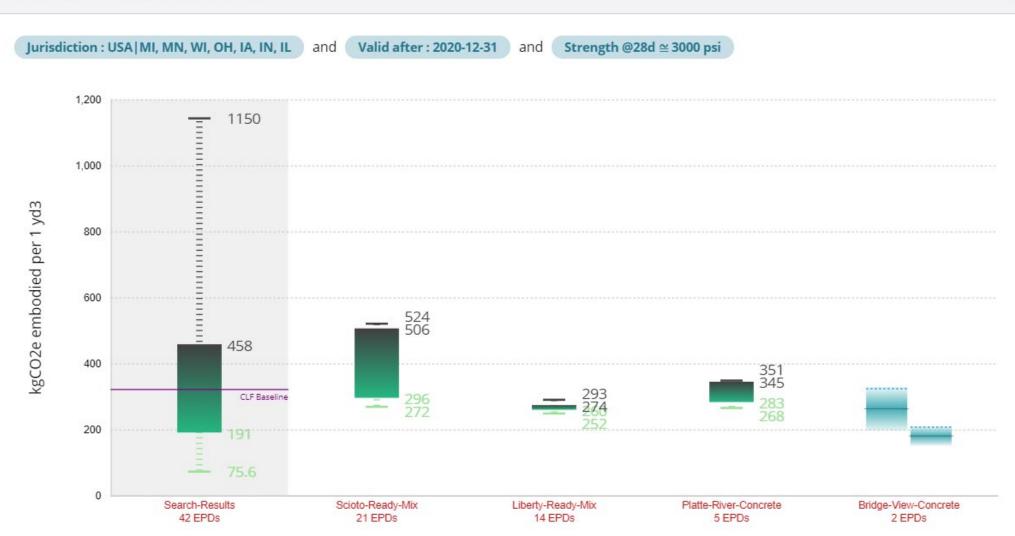
RCH BY PROPERTIES: 03 30 00 CAST-IN-	PLACE CONCRETE		✓ CHANGE THIS ELEMENT
PERFORMANCE SPECIFICATIONS			kgCO2e embodied per 1 yd3
Compressive Strength ≅ 3000 psi	© Curing Time 28d ▼ Compressive Stre	ength Other @ Curing Time 🔻	Tour : BOXPLOT CONTROL TOUR : DIAGRAM
Cementitious Materials			700
			600
≥ Gray Portlan ≥ White Portlan	≥ GGBS ≥ Fly Ash	≥ Silica Fume ≥ Ground Glass	500 Max 523.7 500 Conservative 465.8
≥ Natural pozz ≥ Metakaolin	≥ Other SCMs		400
			300 CLF Baseline
Slump (min) Options	✓ ≤ W/C Ratio	≤ EC3 / 1 yd3	200Achievable
🔘 Standardweight 🔘 Lightweight			100
GEOGRAPHIC			0
	Filter by Country/State/Province		
Filter by Region 💌	Michigan × Ohio ×	Max Distance from Project Site	
	Indiana × Illinois × × •	GWP Transport Cost	

EPD Data and Files

- EDP's from various suppliers in the specified geographical area.
- Data is used for EC3 calculations.

PRODUCT EPDS

• User has the ability to view each EDP


Subcategory 💌	Manufacturer	Plant or Plan₽ ↑↓ Compare	✓ Product ↑↓	✓ Description ↑↓	≅ Compressiv ↑↓	≤ EC3 / 1 yd3	Straight-line Di ↑↓	Details
ReadyMix	Scioto Ready Mix	Alexandria	🔲 6 Sand / 1 Ce	6 Sand / 1 Cement	3000 psi	402 kgCO2e	172 miles	Details Open
ReadyMix	Scioto Ready Mix	Alexandria	Mix c8d830f	3000 2 In Pump	3000 psi	347 kgCO2e	172 miles	Details Open
ReadyMix	Scioto Ready Mix	Alexandria	300FN1L5M	3000 Footing	3000 psi	278 kgCO2e	172 miles	Details Open
ReadyMix	Scioto Ready Mix	Alexandria	553BN1L8D	Enacsement w/ D	3000 psi	321 kgCO2e	172 miles	Details Open
ReadyMix	Scioto Ready Mix	Alexandria	Mix 89be5b0	3000 Light Weight	3000 psi	510 kgCO2e	172 miles	Details Open
ReadyMix	Platte River Conc	Council Bluffs, IA	Mix e14af205	RAVEN L3000 NA	3000 psi	343 kgCO2e	600 miles	Details Open
ReadyMix	Platte River Conc	Council Bluffs, IA	Mix a89618a	RAVEN CLSM	3000 psi	268 kgCO2e	600 miles	Details Open
ReadyMix	Platte River Conc	Council Bluffs, IA	Mix 6f44df2a	LF3000 AE	3000 psi	288 kgCO2e	600 miles	Details Open

Compare By Manufacturer

3000 psi for Foundations

×

COMPARE BY MANUFACTURER

Reduced Carbon Mix Designs - EC3 Tool estimates

Used EC3 tool professional user free access to access Great Lakes regional EPD's to get estimated carbon reduction.

Concrete Element	Volume	Mix PSI	Portland cement	Slag (lbs)	Fly Ash (lbs)	Total Cementitious	Achievable Total kgCO2 / element	Realized Total kgCO2 / element
Foundations	950	3000	N/A	N/A	N/A	N/A	180,000	438,000
Columns / Shear Walls	650	6000	N/A	N/A	N/A	N/A	152,000	317,000
SOG	300	4000	N/A	N/A	N/A	N/A	70,400	154,000
SOD	1450	5000	N/A	N/A	N/A	N/A	353,000	748,000

Achievable 756k kg - vs. Realized 1.66M kg

Athena Impact Estimator for Buildings

📶 Modify Project
Project
Athena Impact Estimator for Buildings
Project Name
DIL - Project 2 Benchmark mixes using extra material
Project Location
Minneapolis 🗸
Building Type
Commercial ~
Building Life Expectancy Building Height (ft)
Units Gross Floor Area (ft ²) O SI O Imperial 10.764
Synchronize Assembly Display Units
Project Number
Project Description (CTRL + Enter for new line)
Operating Energy Consumption
@ Help 🛯 Duplicate 🔇 Delete 🖌 OK 🔀 Cancel

Assumptions taken:

- Mix library in the estimator tool are claimed to be USA average based on NRMCA data
- The achievable GWP discovered by the EC3 tool based on existing EPD's was an average number and lower GWP could be possible
- Small changes in SCM percentage can make big changes in GWP results
- 50% portland cement replacement was used For this exercise, Fly ash was 40% and Slag was 60% of the portland replacement.

Embodied Carbon in Athena Calculator

 Project Location in Select cities in USA and Canada

• EPDs for several building materials

Select from list Select from list #15 Organic Felt #30 Organic Felt 1/2" Fire-Rated Type X Gypsum Board 1/2" Gypsum Fibre Gypsum Board 1/2" Moisture Resistant Gypsum Board 1/2" Regular Gypsum Board 1/2" Glass Mat Gypsum Panel 10" Lightweight Concrete Block 10" Normal Weight Concrete Block 12" Lightweight Concrete Block 12" Normal Weight Concrete Block 2" Insulated Metal Panel 3 mil Polyethylene 3" Insulated Metal Panel 4" Lightweight Concrete Block 4" Normal Weight Concrete Block 5/8" Fire-Rated Type X Gypsum Board 5/8" Gypsum Fibre Gypsum Board 5/8" Moisture Resistant Gypsum Board 5/8" Regular Gypsum Board 5/8" Glass Mat Gypsum Panel 6 mil Polyethylene 6" Lightweight Concrete Block 6" Normal Weight Concrete Block 8" Lightweight Concrete Block 8" Normal Weight Concrete Block Air Barrier Aluminum Casting Auminum Clad Wood Window Frame

 \sim

1

Athena Impact Estimator for Buildings

Project Name	
Project 2	
Project Location	1
Minneapolis ✓ Atlanta Calgary Halifax Los Angeles Minneapolis Montreal New York City Orlando Ottawa Pittsburgh Portland Quebec City Seattle Toronto USA Vancouver Winnipeg Project Description (CTRL + Enter for r	Building Height (ft) 70 Gross Floor Area (ft²) 1000 s
Operating Energy Consumption	

Athena Impact Estimator Project input options

III DIL - Project 2 Bench Assembly				
Name:				
lillillilli të të	Number of C	olumns:	Column Height (ft):	
to the second	0		0	
	Number of B	eams:	Supported Element	
	0		Floor	
Th Th	Bay Size (ft):		O Roof	
Units	0		Live Load	
O si	Supported S	pan (ft):	50 psf	Î
Imperial	0		○ 75 psf	F
	Supported A	rea (ft²):	O 100 psf	1 0
	0			1
Column Type		Beam Type		
Softwood Lumber		Glular		
O Hollow Structural Ste	eel		SL	
O Glulam		OWF		
O LVL / PSL O WF			te t Concrete Perimeter	
O WF O Concrete		-	t Concrete Perimeter t Concrete Interior	
O Precast Concrete Pe	rimeter	~	efined Concrete	
O Precast Concrete Int		O USEI D	enned Concrete	
O User Defined Concre				

V OK

💥 Cancel

Duplicate

O Delete

Help

- Assembly can be defined by dimensions of the element making specific project information define concrete volumes and therefore element specific GWP
- Using the extra materials option allows one to simply define concrete volume, concrete mix and customize constituents for the element on a project level.
- 5% is automatically added to any volumes entered for project waste.

Athena Impact Estimator for Build	ings		
File Edit Reports Tools V	Vindow Help		
: 🔛 😂 🌥 🗞 📑 Cop	py 📋 Paste 🛛 🕜 Add 📝 Modi	ify 🔄 Duplicate 🔇 Delete	🗇 Previous 📫 Next 🛛 🥥
□-m Impact Estimator for Buildings			
DIL - Project 2 Bench Order Construction (260.02)	Modify Ctrl+M		
DIL - Project 2 Be	Duplicate Ctrl+U		
Columns and Beams	Save		
E-G Floors (586.51 Tonne	Save As		
DIL - Project 2 Be	Close		
DIL - Project 2 Be	Reports		
	Add Assembly	Foundations •	
	Delete All Assemblies	Walls 🕨	
	BOM File Import	Columns and Beams	Columns and Beams
		Roofs +	Metal Building System - Columns and Beams
		Floors +	Extra Materials
		Project Extra Materials >	

Benchmark and Custom mixes to compare for calculating GWP reduction

- Benchmark mixes are based
 on NRMCA USA averages
- Mix constituents are listed in unit mass contribution, % by weight and % by volume

Tons (short)

yd3

0.1510

0.0000

0.1510

1.3080

7.77%

0.00%

16.73%

0.00%

0.8428

0.0000

257 Water

279 Ready Mix Concrete Plant Process

- Mix constituents are customizable to meet project and producer needs
- Each constituent can be custom entered by unit quantity, % by weight, or % by volume to make the custom mix

0.0000

1.3080

0.00%

0.0000

0.00%

T Us	ser Define	d Concrete Mix Design Record						- 0	m	Jser Defined	Concrete Mix Design Record						- 🗆
	Ac	dd 🔄 Duplicate 😑 Remove 🛛 🕞 Rev	rert 💽	× < >	>>	Calculate	🖌 Valio	date		🖌 🚱 Add	🎦 Duplicate 🤤 Remove 💽 Rev	vert 💽	×	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	Calculate	🖌 🗸	date
Reco	ord Type	Database		Manually Overri	de Product Density			Units O SI	Re	cord Type	Jser Defined		Manually Over	de Product Density	\checkmark		Units O SI
Produ	uct ID	293		Product Density	1.9438	[Tons (sh	ort)/yd3]	 Si Imperial 	Pro	duct ID	100001		Product Density	1.9438	[Tons (sh	ort)/yd3]	 Imperial
Produ	uct Name	Concrete Benchmark USA 4000 psi		Calculated Der	nsity 1.9438	[Tons (sh	iort)/yd3]		Pro	duct Name	Concrete USA 4000 psi 50% SCM replaceme	nt	Calculated Der	nsity 1.8689	[Tons (sh	ort)/yd3]	
Produ	uct Type	Concrete	\sim	Component Ma	terial Contribution Typ	e			Pro	duct Type	Concrete	~	Component Ma	terial Contribution Typ	e		
Unit		yd3		By Unit Qu		Mass 1.9438			Uni	t y	d3		By Unit Qu	antity Total Uni	Mass 1.8689		
		·		By Percent	-	y Weight 100.00%							O By Percent		y Weight 100.00%		
					Volume Total % by								O By Percent	Volume Total % b	y Volume 100.00%		
Com	ponents	🚱 Add 🖨 Remove 🔏 Clear							Co	nponents	😮 Add 🛛 😑 Remove 🤞 Clear						
	ID	Name	Unit	Density [Tons (short)/yd3]	Unit Mass Contribution [Tons (short)/yd3]	Unit Quantity Contribution to Calculated Density [Tons (short)/yd3]	% By Weight	% By Volume		ID	Name	Unit	Density [Tons (short)/yd3]	Unit Mass Contribution [Tons (short)/yd3]	Unit Quantity Contribution to Calculated Density [Tons (short)/yd3]	% By Weight	% By Volume
		66 Slag Cement	Tons (short)	2.4609	0.0125	0.0125	0.64%	0.47%	•	166	Slag Cement	Tons (short)	2.4609	0.0833	0.0833	4.46%	3.24%
		08 Fine Aggregate Natural	Tons (short)	1.6266	0.5792	0.5792	29.80%	33.24%	-	198	Fine Aggregate Natural	Tons (short)	1.6266	0.5792	0.5792	30.99%	34.07%
			Torio (orioity	1.0200				00.2110		100			0.0500	0.0774		4.13%	3.28%
	19	39 Fine Aggregate Crushed Stone	Tons (short)	2 2502	0.0771		3 97%	3 20%		199	Fine Aggregate Crushed Stone	Tons (short)	2.2502	0.0771	0.0771	4.13%	0.20%
		99 Fine Aggregate Crushed Stone 10 Coarse Aggregate Natural	Tons (short)	2.2502	0.0771	0.0771	3.97%	3.20% 11.50%			Fine Aggregate Crushed Stone Coarse Aggregate Natural	Tons (short) Tons (short)	2.2502	0.0771	0.0771	4.13%	11.79%
	20	1 Coarse Aggregate Natural	Tons (short)	2.0227	0.2492	0.0771 0.2492	12.82%	11.50%		201						13.33% 28.62%	11.79% 22.74%
	20	D1 Coarse Aggregate Natural D2 Coarse Aggregate Crushed Stone	Tons (short) Tons (short)	2.0227 2.2502	0.2492 0.5348	0.0771 0.2492 0.5348	12.82% 27.51%	11.50% 22.19%		201 202	Coarse Aggregate Natural	Tons (short)	2.0227	0.2492	0.2492 0.5348 0.1388	13.33% 28.62% 7.43%	11.79% 22.74% 5.00%
	20 20 20	1 Coarse Aggregate Natural	Tons (short)	2.0227	0.2492	0.0771 0.2492	12.82%	11.50%		201 202 205 208	Coarse Aggregate Natural Coarse Aggregate Crushed Stone	Tons (short) Tons (short)	2.0227 2.2502	0.2492 0.5348	0.2492 0.5348	13.33% 28.62%	11.79% 22.74%

279 Ready Mix Concrete Plant Process

yd3

Athena tool benchmark - Full project results

- Athena Impact Estimator tool complete LCA report by element.
- Reports are exportable to various software
- Internal calculators multiply per cubic yard GWP metrics by volumes input for each element

LCA Measure Table By Assembly Groups (A to C)

Project: DIL - Project 2 Benchmark mixes using extra material

LCA Measures	Unit	Foundations	Walls	Columns and Beams	Roofs	Slabs on Deck	Slabs on Grade	Total
Global Warming Potential	kg CO2 eq	2.60E+05	0.00E+00	2.77E+05	0.00E+00	5.87E+05	1.02E+05	1.23E+06
Acidification Potential	kg SO2 eq	1.02E+03	0.00E+00	9.61E+02	0.00E+00	2.04E+03	4.11E+02	4.43E+03
HH Particulate	kg PM2.5 eq	1.68E+02	0.00E+00	1.83E+02	0.00E+00	3.87E+02	6.61E+01	8.05E+02
Eutrophication Potential	kg N eq	2.81E+02	0.00E+00	3.08E+02	0.00E+00	6.52E+02	1.12E+02	1.35E+03
Ozone Depletion Potential	kg CFC-11 eq	5.57E-03	0.00E+00	6.36E-03	0.00E+00	1.34E-02	2.21E-03	2.76E-02
Smog Potential	kg O3 eq	2.46E+04	0.00E+00	2.18E+04	0.00E+00	4.64E+04	1.01E+04	1.03E+05
Total Primary Energy	MJ	1.88E+06	0.00E+00	1.86E+06	0.00E+00	3.95E+06	7.39E+05	8.42E+06
Non-Renewable Energy	MJ	1.82E+06	0.00E+00	1.79E+06	0.00E+00	3.80E+06	7.15E+05	8.12E+06
Fossil Fuel Consumption	MJ	1.72E+06	0.00E+00	1.68E+06	0.00E+00	3.57E+06	6.78E+05	7.66E+06

Athena Impact Estimator - Benchmark GWP

Concrete Element	Volume	Mix PSI	Portland Type I/II	Slag (lbs)	Fly Ash (lbs)	Total Cementitious	Benchmark GWP kgCO2e/cy	Total CO2 / element
Foundations	950+5%	3000	455	20	88	563	273.68	260,000kg
Columns / Beams	650+5%	6000	759	33	146	938	426.15	277,000kg
SOG	300+5%	4000	570	25	110	705	340	102,000kg
SOD	1450+5%	5000	719	32	138	889	404.8	587,000kg

Benchmark Embodied Carbon Project Total = 1,226,000 kg

Reduced Carbon Mixes with 50% SCM Replacement - Athena

LCA Measure Table By Assembly Groups (A to C)

Project: DIL Sustainability Project with 50% SCM Replacement

LCA Measures	Unit	Foundations	Walls	Columns and Beams	Roofs	Floors	Slab on Grade	Total
Global Warming Potential	kg CO2 eq	1.59E+05	0.00E+00	1.59E+05	0.00E+00	3.36E+05	6.16E+04	7.15E+05
Acidification Potential	kg SO2 eq	7.79E+02	0.00E+00	7.12E+02	0.00E+00	1.51E+03	3.26E+02	3.32E+03
HH Particulate	kg PM2.5 eq	1.13E+02	0.00E+00	1.17E+02	0.00E+00	2.46E+02	4.32E+01	5.20E+02
Eutrophication Potential	kg N eq	1.73E+02	0.00E+00	1.79E+02	0.00E+00	3.78E+02	6.73E+01	7.97E+02
Ozone Depletion Potential	kg CFC-11 eq	3.98E-03	0.00E+00	4.33E-03	0.00E+00	9.09E-03	1.51E-03	1.89E-02
Smog Potential	kg O3 eq	1.82E+04	0.00E+00	1.55E+04	0.00E+00	3.30E+04	7.96E+03	7.46E+04
Total Primary Energy	MJ	1.33E+06	0.00E+00	1.24E+06	0.00E+00	2.63E+06	5.26E+05	5.73E+06
Non-Renewable Energy	MJ	1.29E+06	0.00E+00	1.20E+06	0.00E+00	2.55E+06	5.12E+05	5.55E+06
Fossil Fuel Consumption	MJ	1.22E+06	0.00E+00	1.12E+06	0.00E+00	2.37E+06	4.82E+05	5.19E+06

	Foundations	Columns & Beams	Floors	Slab on Grade	Total
GWP (in kg CO2)	159,000	159,000	336,000	61,600	715,600

Reduced Carbon Mix Designs - Athena Calculator estimates

Used Athena calculator to enter mix designs with reduced carbon based from NRMCA benchmark mixes.

Concrete Element	Volume	Mix PSI	Portland Type I/II	Slag (lbs)	Fly Ash (lbs)	Total Cementitious	Reduced Co2 GWP kgCO2e/cy	Total CO2 / element
Foundations	950	3000	235	141	94	470	167.37	159,000
Columns / Beams	650	6000	363	218	145	726	244.62	159,000
SOG	300	4000	278	167	111	556	205.33	61,600
SOD	1450	5000	342	205	137	684	231.72	336,000

Proposed Reduced CO2 Project Total = 715,600 kg

m	User De	fined Con	crete Mix Design Library								_		
Filt	• 🏦 U:	er Define	d Concrete Mix Design Record										×
Pr		@	d 🕞 Dustanta 🔿 Damana 💭 Dama				lata AN	/alidate					
S		C Ad	d 🖺 Duplicate 😑 Remove 🗋 Reve	rt < <	> >>	Calcu	ilate 🗸 V	alidate					
	Reco	ord Type	User Defined	Manually O	Verride Product Density 🗸			Units	_				
	Prod	uct ID	100000	m Select a Material from	n the Database		_						
Filt	e Prod	uct Name	Concrete Reduced Carbon 50% Replacement 3	Search for a Material in the	Database								
	Prod	uct Type	Concrete	Search String	%								
	Unit		m3	Material Type	Binder		~						
۲							•						
				Materials	Select from list Select from list		~						
				Selected Material Info	Asphalt Binder No Additives Asphalt Binder with Ground Rub	h an Tina							
	Com	ponents	🚱 Add 😑 Remove 🔏 Clear	Material ID	Asphalt Binder with Polyphosph	oric Acid							
				Material Name	Asphalt Binder with Styrene But Portland Cement	adiene Styr	ene			Unit Quantity			
	L				Portland Lime Cement Water					Contribution to Calculated Density	% By	% By	ls a Process
		ID	Name	Unit of Measure						[Tonnes/m3]	Weight	Volume	Record
	•	16	6 Slag Cement	Conversion to Tonnes					37	0.0837	3.74%	2.71%	Г
	L		8 Fine Aggregate Natural	Density		[Tonr	nes/m3]		50	0.7160	31.99%	35.03%	Г
	L		9 Fine Aggregate Crushed Stone						53	0.0953	4.26%	3.37%	
	L		1 Coarse Aggregate Natural		Is a Process				30	0.3080	13.76%	12.12%	
	L		2 Coarse Aggregate Crushed Stone		Has Rolled Up LCI Data				0	0.6610	29.53%	23.38%	
	L		8 Fly Ash	~					58	0.0558	2.49%	2.29%	
	L		7 Water	e Help			🖌 ОК	💥 Cancel	2	0.1792	8.00%	16.92%	Г
-	1		9 Ready Mix Concrete Plant Process			ciii	0.00		-	1.0000	0.00%	0.00%	
0		20	5 Portland Cement			tonnes	3.15	00 0.13	94	0.1394	6.23%	4.18%	
-													
	@ He	elp									V 0	к	Cancel

- Change to Portland Lime Cement by changing binder in material database
- Must add PLC, manually input quantity and remove Portland Cement

Reduced Carbon Mixes with 50% SCM Replacement & PLC Cement - Athena

LCA Measure Table By Assembly Groups (A to C)

LCA Measures	Unit	Foundations	Walls	Columns and Beams	Roofs	Floors	Slab on Grade	Total
Global Warming Potential	kg CO2 eq	1.49E+05	0.00E+00	1.48E+05	0.00E+00	3.12E+05	5.78E+04	6.67E+05
Acidification Potential	kg SO2 eq	7.55E+02	0.00E+00	6.85E+02	0.00E+00	1.45E+03	3.17E+02	3.21E+03
HH Particulate	kg PM2.5 eq	1.08E+02	0.00E+00	1.11E+02	0.00E+00	2.33E+02	4.10E+01	4.93E+02
Eutrophication Potential	kg N eq	1.70E+02	0.00E+00	1.76E+02	0.00E+00	3.71E+02	6.62E+01	7.83E+02
Ozone Depletion Potential	kg CFC-11 eq	3.77E-03	0.00E+00	4.10E-03	0.00E+00	8.62E-03	1.43E-03	1.79E-02
Smog Potential	kg O3 eq	1.78E+04	0.00E+00	1.51E+04	0.00E+00	3.22E+04	7.83E+03	7.30E+04
Total Primary Energy	MJ	1.28E+06	0.00E+00	1.19E+06	0.00E+00	2.51E+06	5.06E+05	5.48E+06
Non-Renewable Energy	MJ	1.24E+06	0.00E+00	1.15E+06	0.00E+00	2.43E+06	4.93E+05	5.31E+06
Fossil Fuel Consumption	MJ	1.17E+06	0.00E+00	1.07E+06	0.00E+00	2.26E+06	4.64E+05	4.96E+06

Project: Copy of DIL Sustainability Project with 50% SCM Replacement

	Foundations	Columns & Beams	Floors	Slab on Grade	Total
GWP (in kg CO2)	149,000	148,000	312,000	57,800	666,800

Low Carbon Mixes with Portland vs PLC

With Portland Cement									
	Foundations	Columns & Beams	Floors	Slab on Grade	Total				
GWP (in kg CO2)	159,000	159,000	336,000	61,600	715,600				

With PLC Cement									
	Foundations Columns Floors Slab on Grade Total								
GWP (in kg CO2)	149,000	148,000	312,000	57,800	666,800				

• Additional 7% Reduction in CO2 by using PLC

Side By Side Comparison EC3 to Athena Impact Estimator for Buildings

Project Application	Volume	NRMCA Benchmark GWP	EC3 Tool Achievable GWP	% GWP Reduction	Athena IE Tool Benchmark GWP	Athena IE Tool Benchmark GWP	% GWP Reduction
Foundations	950	201000	180000	10%	260000	159000	39%
Columns/Shear Walls	650	209000	152000	27%	277000	159000	43%
Slab on Deck	1450	76000	71000	7%	102000	62000	39%
SOG	300	441000	353000	20%	587000	336000	43%
Total Project GWP in kgCO2e	3350	927000	756000	18%	1226000	716000	42%

- This free download can demonstrate to engineers / architects on a project basis how much GWP percentage reduction can be targeted or even specified.
- Producers can use the tools to demonstrate capabilities to owners, architects, and engineers.
 - Provide architects/engineers a day-to-day approach on how to reduce the total carbon footprint from concrete.
- Producers can work with engineers to custom design mixes per building element as required based on project requirements.

Considerations for Specifiers and Suppliers:

- Tools that utilize a database are limited to data submitted in the region
- GWP reduction levels may or may not be achievable based on specific available raw materials
- GWP reduction levels should be considered a guide on the possibilities
- Write the spec for the desired kgCO2e without prescribing the mix properties
- Consider accepting 56 day performance ILO 28 day that is typically considered.

Thank you for your time!

Questions?