

QUALITY CONTROL GUIDE FOR READY MIXED CONCRETE PRODUCERS

National Ready Mixed Concrete Association

66 Canal Center Plaza, Ste. 250, Alexandria, VA 22314 (703) 706-4800 • www.nrmca.org

QUALITY CONTROL GUIDE FOR READY MIXED CONCRETE PRODUCERS

Table of Contents

INTRODUCTION	0
DEFINITIONS	1
Quality Control Quality Assurance (QA) Quality Control Plan	1
COMPANY POLICIES AND INITIATIVES	1
TARGET QUALITY PERSONNEL POLICIES SELECTION AND MAINTENANCE OF PLANT EQUIPMENT MATERIALS SELECTION AND QUALITY MANAGEMENT WITHIN-COMPANY COORDINATION OF QUALITY CONTROL WITHIN-COMPANY COORDINATION OF QUALITY CONTROL SCOPE OF QUALITY CONTROL ACTIVITIES PRODUCT MANAGEMENT MEASUREMENT SYSTEMS PERSONNEL TRAINING COMMUNICATIONS	2 2 2 3 3
PROMOTION AND INDUSTRY REPRESENTATION	8
PROMOTING THE COMPANY BUSINESS PROMOTING GOOD PRACTICES IN HANDLING AND TESTING OF CONCRETE	9
PROMOTING USES OF CONCRETE AND REALISM IN CONCRETE SPECIFICATIONS COMPANY REPRESENTATION IN INDUSTRY GROUPS	10
Company Representation in Industry Groups TOPICS FOR PERSONNEL INSTRUCTION QUALITY CONTROL STAFF PLANT OPERATORS CONCRETE DELIVERY PROFESSIONALS DISPATCHER/OFFICE PERSONNEL SALES REPRESENTATIVES	11 1111111111111111
Company Representation in Industry Groups TOPICS FOR PERSONNEL INSTRUCTION QUALITY CONTROL STAFF PLANT OPERATORS CONCRETE DELIVERY PROFESSIONALS DISPATCHER/OFFICE PERSONNEL	11 1111111111111111
Company Representation in Industry Groups TOPICS FOR PERSONNEL INSTRUCTION QUALITY CONTROL STAFF PLANT OPERATORS CONCRETE DELIVERY PROFESSIONALS DISPATCHER/OFFICE PERSONNEL SALES REPRESENTATIVES	11 1111111111111111111111

QUALITY CONTROL GUIDE FOR READY MIXED CONCRETE PRODUCERS

Introduction

In this age of high demands on quality and dependability of engineering materials and systems, and the manufacturer's potential involvement in product liability, well-developed quality control systems have become an indispensable part of doing business in many industries. Ready-mixed concrete involves several unique factors which require attention.

- 1. It is a processed but unfinished material at the time of delivery.
- 2. The quality and uniformity of concrete vary because of a large number of factors. Some are readily identified and controlled; others can be obscure and not so easily controlled.
- 3. The quality of the end product is affected by various factors at different phases of processing:
 - selection and variability of ingredients;
 - their proportions;
 - the thoroughness with which they are combined; and
 - conditions related to transportation, placement, and protection of the concrete.
- 4. In its "as sold" condition, the product is perishable and will not remain in the plastic and unhardened condition beyond a limited time, the exact period depending upon circumstances.
- 5. Its ultimate quality, compressive strength, cannot be verified at the time of sale, in contrast to other materials such as steel, lumber, and masonry units.
- 6. The product is subject to testing by others. Variations from standard methods of testing and individual interpretation of methods or criteria result in a misrepresentation of the true quality of the product.
- 7. While most manufacturing industries enjoy a high degree of standardization of their products, the ready mixed concrete industry is compelled to modify and adjust its product to a host of variables in response to real or perceived needs for the various uses of concrete in a project and to make efficient use of locally available raw materials.
- 8. It is expected to meet prescriptive as well as performance requirements which may be in conflict.

In summary, the complexity of providing a quality product, and having it recognized and certified as such, presents the concrete producer with a fairly clear-cut choice:

- Use a comfortable safety factor regarding the strength and other measured properties of concrete and trust in good luck; or
- Become committed to a well-organized quality control effort.

The former represents a cost with no potential benefit. The latter is an investment that will produce realized benefits. This guide will be of help if the latter option is selected.

Definitions

Quality Control

also called **Process Control**

- Sum total of activities performed by the seller (producer, manufacturer, and/or contractor) to make sure that a product meets contract specification requirements. Within the context of highway construction, this includes materials handling and construction procedures, calibration and maintenance of equipment, production process control, and any sampling, testing, and inspection that is done for these purposes.
- Actions taken by an organization to provide control and documentation over what is being done and what is being provided so that the applicable standard of good practice and the contract documents for the work are followed

These concepts of quality control include sampling and testing to monitor the process but usually does not include acceptance sampling and testing.

Quality Assurance (QA)

- All those planned activities and systematic actions necessary to provide adequate confidence that a product or service will satisfy given requirements for quality. Within an organization, QA serves as a management tool. In contractual situations, QA serves to provide confidence in the supplier.
- Actions taken by an organization to provide and document assurance that what is being done and what is being provided are in accordance with the contract documents and standards of good practice for the work.

Quality Control Plan

A detailed description of the type and frequency of inspection, sampling, and testing deemed necessary to measure and control the various properties governed by agency specifications. This document is submitted to the agency for approval by the contractor during the pre-construction conference.

The term quality control plan is project-specific as opposed to the broader company-specific overview document that describes its Quality Management System (QMS).

Company Policies and Initiatives

Setting up a quality control organization is a part of a company-wide quality decision. Just hiring quality control personnel, purchasing the necessary equipment, and implementing a sampling and testing program does not necessarily assure the production of quality concrete. These efforts might only serve to enlighten management on the current shortcomings of company operations and concrete production. Other decisions need to be made to make the quality control organization a worthwhile investment.

Target Quality

This involves a management commitment to define the desired level of product quality. An important part of setting target quality is to identify and minimize manageable variability to optimize concrete mixtures and production processes to maximize profitability and support sustainability.

There needs to be stated quantifiable quality objectives or goals that are communicated to company personnel along with a measurement process to support them. The decision-making process covers other important matters such as willingness to maintain product quality regardless of competitive pressures. Quality targets should be based on business reasons for improving profitability. Examples of quantifiable objectives include strength standard deviation of mixtures by plant, percent rejected concrete due to quality, and resources (cost and time) attributed to troubleshooting concrete quality issues. Data generated from the process should be used for continuous improvement and not done for the sake of doing it. Less important stated quality targets

for quality goals include, for example, customer satisfaction issues. These are important to market the company but are not quality objectives.

Personnel Policies

Selection of qualified personnel for managing product quality and operation of plants and truck mixers has a considerable bearing on delivering concrete of dependable and predictable quality.

Quality control managers and technicians should monitor and control materials and product quality and work in concert with operations and sales personnel.

Plant operators should be capable of operating with a minimum number of errors regardless of outside pressures. They should have the ability to comprehend the effects of various factors on concrete quality and be able to make the right decisions in problem situations.

A higher-than-average degree of alertness, and concern for product quality, is required of concrete delivery professionals, particularly when working in dry-batch operations. It is their job to take the materials weighed into their units and produce well-mixed concrete without impacting the intended product quality. They should be able to use judgment in adjusting its consistency to fit the job specifications. On the job site, they protect the company's interests by carefully recording additions of water and other materials to the concrete and noting any observed malpractice in sampling, placing, handling, and testing.

Good people must be attracted, trained, and retained to control concrete quality within their various job assignments. Training sessions and seminars are necessary to ensure that each person gets the information needed to perform his or her job effectively. Industry certification programs help establish personnel career growth and company reputation.

Selection and Maintenance of Plant Equipment

Investment in dependable plant equipment, including truck mixers, and appropriate maintenance and replacement schedules, will govern the capability of an operation to consistently put out a quality product. The higher initial investment may pay off in the long run if it helps reduce or eliminate costly product failures. For example, automated batching controls will reduce the risk of misbatched loads. Complete physical separation and proper identification of aggregate types and cementitious materials will prevent incorporating incorrect materials in loads. or errors when batching, and can prevent the potentially disastrous effect on concrete performance.

Production facilities and delivery vehicles should conform to the requirements of ASTM C94. This can be ensured by attaining the NRMCA plant inspection certification records or a State DOT plant approval. Scales and volumetric measuring devices should be verified for accuracy at stated frequencies. There should be procedures to monitor and address batches, where materials measured are out of tolerance, and specifically to control mixing water to within the ASTM C94 tolerance of $\pm 3\%$

Materials Selection and Quality Management

Selection of concrete materials strictly based on economy and with disregard to evidence of variable or inferior quality may be counterproductive by tying up quality control personnel in time-consuming efforts to analyze the causes of resulting substandard or variable concrete performance. A poor-quality concrete material may eventually turn out to produce highly variable concrete fresh and hardened concrete properties and result in rejection of loads and require excessive overdesign of mixtures to avoid failures. While troubleshooting these problems, the unavailability of quality control personnel for other critical assignments is then liable to magnify the company's quality problems.

Current material certification should be retained for materials used to produce concrete. Concrete material data that is used in mixture proportions, such as aggregate relative density, should have been recently measured. When non-potable sources of water are used, there should be documentation for compliance with ASTM C1602 or requirements of the local highway department. There should be a process in place at the plant to verify that material shipments agree with the material order. There should be a process in place for monitoring changes in the characteristics of the primary cement used. This could involve monitoring ASTM C917 test reports obtained from the cement supplier or test measurements or other data of cement monitored on control charts. There should be a process in place for monitoring changes in characteristics of the fly ash or slag cement used. Fly ash uniformity can include data from the fly ash marketer on loss on ignition (LOI), foam index, mortar air content, and similar tests performed by the concrete producer.

Some details in the NRMCA producer quality certification on quality management of materials:

- Aggregate grading tests be performed at a frequency of once per month of concrete production or every 3000 tons of aggregate used whichever is more often and that aggregate relative density (specific gravity) and absorption tests be performed annually.
- Coarse and fine aggregate moisture measured at a frequency of once per day of production and documented batch adjustments for aggregate moisture.
- Moisture probes, when used, are checked for accuracy at a minimum once every 6 months.

Within-Company Coordination of Quality Control

The person in charge of the quality control organization should have the appropriate authority and be directly responsible to the general manager of the company or division of which it is a part. He or she implements management's decision on the quality level of the product; and reports, usually weekly, on product and production performance. He or she works with the production department to develop means of maintaining and improving the quality level and cost efficiency of production and monitors their successful implementation. Quality control activities should be coordinated with the production and sales departments. In turn, the quality control personnel depend on these departments for information that will result in an optimum contribution by the quality control organization to the company's business objectives. This communication becomes especially important when considering jobs with specifications using statistically-based acceptance criteria with penalty clauses since a knowledge of the level of production variability is critical to the decision to bid. Bidding on work that is not typical for the company should be coordinated between sales and quality control personnel.

Scope of Quality Control Activities

Quality Control has become a convenient label for several functions that not only include the design and control of the company's product but several activities only indirectly related to the control of quality. Quality control initiatives should be proactive to minimize the variability and ensure that a defective load is not delivered to the customer. Quality control that is primarily reactive and focuses on troubleshooting problems after the fact does not provide any benefit to the company.

Quality control activities usually include:

- sampling and testing of concrete and concrete materials;
- plant and field control of concrete production;
- evaluation and procurement of new equipment and tools to improve quality;
- concrete mixture optimization;
- research and development testing;
- specification review;

- evaluation of concrete performance;
- failure analysis and prevention;
- documentation preparation for customers and producer management; and
- facilitation of continuous improvement.

Additionally, quality control functions may include personnel training, various promotional activities, and company representation in industry and professional groups. The various specific tasks necessary to fulfill the company's quality objectives should be clearly defined, personnel assigned, and frequency for performing the task established. The defined processes should be uniform across the company's plants and divisions, as much as possible, so that when one individual cannot complete a particular task an alternate who knows the task can fill in.

While a concrete producer QC department should be proactive and prevent problems, it is not unusual for a large proportion of a QC manager's time to be occupied by unscheduled events, such as:

- Customer issues and complaints
- Availability of materials, the need to change materials, and adjustment to mixtures
- Last-minute requests from Sales and Production
- Issues arising from production or test equipment

Since these events are not planned, it is important to recognize that the events will occur and to develop a process for resolving them in advance of them happening. For example, if the Sales department requires a mixture submittal in a short period, a system should be in place to accomplish this in the absence of the person who typically does this.

Quality Control Staffing

The Quality Control Manager works to implement management's objectives concerning the desired product quality within the overall quality commitment of the company. He or she establishes quality standards for concrete materials and sets up a quality control plan which specifies the scope and frequency of sampling and testing. The QC Manager's assignments usually include

- review of project specifications and selection of job mixtures;
- preparation of concrete mix designs and other product information for approval by the specifying agency;
- evaluation of concrete performance;
- product optimization;
- research and development testing;
- failure analysis and prevention;
- personnel training; and
- advising on technical aspects of promotional activities.

The Quality Control staff often includes quality control technician(s). Control functions of this unit involve primarily the sampling and testing of concrete materials and concrete mixtures, and control of production at the plant and in the field. It may represent the entire quality control operation of a small company, or maybe one of several in a multi-plant company. In smaller companies, these functions may be handled by various members of the management team. In some companies, these functions may be performed with the assistance of outside consultants or laboratories.

Company Laboratory

While not all concrete producers need a dedicated laboratory space, all producers should have the equipment and qualified personnel to perform basic tests on materials and concrete. The company's laboratory may be very basic to perform basic tests on materials and concrete. These include aggregate tests such as sampling (ASTM D75), reducing samples to test size (ASTM C702), aggregate moisture content (ASTM C566), sieve analysis of coarse and fine aggregates (C117 and C136); and preparing trial batches of concrete mixtures (ASTM C192) along with fresh concrete tests such as slump (C143), air content (C231, C173), density and yield (C138), and temperature (C1064).

Laboratories can also have capabilities for advanced testing depending on the company's quality initiative, innovation, and type of market served. These additional tests include relative density and absorption of coarse and fine aggregate (ASTM C127 and C128), LA abrasion test (ASTM C131 or C535), soundness test (ASTM C88), unit weight and voids (ASTM C29). For concrete tests, maintain curing tanks/rooms meeting (ASTM C511), capping cylinders (C617 or C1231), compressive strength (C39), and flexural strength (C78). Some larger companies may have several smaller satellite laboratories capable of performing routine aggregate and concrete testing with a larger central laboratory capable of performing more advanced work. More advanced testing capabilities such as material compatibility evaluation (ASTM C1753, C1810, and C1827), drying shrinkage (ASTM C157), rapid indication of chloride ion penetrability (ASTM C1202), resistivity (ASTM C1876), and ASR testing (ASTM C1260, C1567, and C1293) could be developed. Some or all of these advanced testing capabilities could be contracted with a commercial laboratory. Developing these capabilities helps the company respond to performance-based specifications or to develop innovative concrete mixtures for regular or special applications.

The laboratory should be staffed by senior and junior quality control technician(s) and is usually under the supervision of a quality control manager or an assistant. The proficiency of the laboratory and its personnel should be maintained by periodic third-party inspections and possibly accreditation, and participation in reference sample testing programs. A proficient laboratory could develop the necessary information for project submittals rather than using independent laboratories.

The company's laboratory represents a sound investment only if it generates reliable information. Erroneous test data may either produce a false sense of security or lead to action inappropriate to the occasion, to the detriment of the producer's business. Testing errors are the result of incorrect testing procedures, mistakes in the processing of samples and specimens, or equipment out of calibration. The following measures taken at regular intervals will help to control these potential causes of testing errors.

- 1. Quality control staff is examined for proficiency in test procedures. Results are recorded. Technician certification is available from several organizations, including ACI, NRMCA, and state transportation departments.
- 2. Maintain documentation of the laboratory equipment inventory.
- 3. Ensure that equipment is calibrated and verified at a frequency established by applicable standards. Audits are performed to ensure that equipment is checked for conformance with applicable methods of test. A laboratory manual that tracks these verifications is maintained in which schedules are listed and results of verification, adjustments, and corrective actions are recorded. For example, verification is documented annually for scales and balances, slump cone (ASTM C143). air content (C173), temperature (C1064), dimensions of cylinder molds (C470), compression machine (C39) if used, and sieves are checked for defects and verification procedure. The frequency is at every 3 months for pressure air meters (C231), and sulfur capping (C617), if used. Curing tanks/rooms if available can be used for curing test specimens and meets the requirements stated in ASTM C511.

- 4. Monitoring whether the within test precision of each test method is not violated often.
- 5. Testing a known standard material periodically (an aggregate for ASR test)
- 6. Audit procedures for identification and processing of materials and test specimens, and record-keeping of results.
- 7. Participation in inspection and proficiency sample testing programs such as those offered by CCRL, comparison testing on same samples jointly with other laboratories, and accreditation of the laboratory for conformance with ASTM C1077 and AASHTO R18.

Product Management

There should be a process defined for:

- Review of specifications and orders for concrete and assignment of mixtures.
- Concrete mixture development, and review of the submittal process
- Receiving orders, order entry, and verification of order fulfillment

Procedures should be stated and followed for hot and cold weather concreting if applicable. There should be responsibilities assigned for adjustments to batch quantities and mixture proportions for established mixtures. Certain types of adjustments should be permitted by plant personnel while certain adjustments require approval by technical personnel. There should be a stated record retention policy that meets the local jurisdictional requirements. Records retained include those for maintaining batch records, delivery tickets, and test data on concrete mixtures.

Measurement Systems

There should be a process defined for:

- Establishing internal concrete mixture codes and mixture designations for communications with customers.
- Ensuring traceability of designated mixtures in the company's databases to batch recordation and delivery tickets.
- Product defect resolution
- Internal testing such as regular testing of at least one concrete mixture from each plant by company personnel and data analysis
- Collection and monitoring of quality assurance tests performed by third-party labs, data review, and corrective action
- The identification and management of non-conforming concrete mixtures
- Managing returned concrete, when reused in whole or part

There should be an annual internal quality audit with the company. The audit should use a checklist that ensures that the details of the Quality Manual are being followed at the plants. Corrective action identified in the audit should be completed in a timely manner.

Personnel Training

The quality control department can provide technical training resources, or identify relevant industry training and certification programs, for advancing the professionalism of all company personnel. A basic understanding of concrete technology and the company's quality standards fosters personal involvement in product quality and will lead to making the right decisions in problem situations. The qualification of quality control personnel for their teaching functions is built up through attendance at industry seminars and short

courses, through a study of pertinent publications, and correlation of theoretical information with practical experience in the field. Training aids, either prepared in-house or obtained from outside sources, can be used to lend substance to the training sessions and make them interesting. The content of the training program should be established for each type of job function within the company. See information on the range of instruction subjects for different personnel later in this document. The effectiveness of the training sessions is enhanced by administering a quiz at the end of each session. It will provide a means for gauging the success of the teaching efforts.

The NRMCA producer quality certification states that:

- The person in charge of mixture proportions and specification review should be a licensed engineer or possess an NRMCA Concrete Technologist Level 2 Certification and possibly Levels 3 and 4; or ACI Concrete Quality Technical Manager certification with several years of experience in documenting responsibility for mixture proportioning and specification review.
- At least one field technician should have a current ACI Field Grade 1 certification.
- At least one laboratory technician should have a current ACI Lab Testing Technician Level I or have 4 years of experience in concrete and aggregate tests
- At least one person at each plant who is in charge of batching concrete should have a current NRMCA Concrete Plant Operator certification or DOT batchman certification or have 4 years work experience and technical education related to batching concrete
- At least two truck concrete delivery professionals at each plant should have NRMCA Concrete Delivery Professional certification or documented training on technical topics outlined later in this document.

Communications

The usefulness of a quality control department depends to a large extent upon its participation in the flow of communications within the organization. A communications model is presented which illustrates the desirable flow of communications involving the quality control organization at various phases of a project.

Job Phase	Information	From	То	Action Required
Planning Stage (Owner or A/E)	Type of project; Job size	Sales	QC	Provide specification input. Present performance histories of concrete and aggregates to out-of-area A/E offices. Forward to owner information on long-term benefits of concrete pavements and parking lots.
		Sales	QC	Specification review; obtain clarification from A/E as needed.
Solicitation of	Availability of	QC	Sales	Mix recommendations for price quotations.
Bids	specifications	QC	Materials	Determine availability and cost of special materials.
		QC	Operations	Input on special delivery requirements and equipment for a cost estimate.
				Resolution of conflicting and overly restrictive specification requirements.
Pre-Bid Conference Whe	Where and When	Sales	QC	Clarification of responsibilities for special items (for example, site addition of admixtures)
				Provisions for extra testing costs if high-strength concrete is specified.

Job Progress Communications

Job Phase	Information	From	То	Action Required
Job Award	Name of Contractor	Sales	QC	Technical information to contractor, including performance history of company's concrete on previous similar jobs. Available performance options for rapid form cycling or reducing labor costs.
		Sales	QC	Mix design submission
		QC	Materials	Order special concrete materials
Selection of Concrete	"Job Sold!"	QC	Operations	Batching information to batch plants
Supplier		QC	Dispatcher	List of job mixes, with "red-flagging" of special mixes, special concrete properties, and delivery requirements
		QC	Accounting	Mix identification and material quantities
Pre- Construction Conference	Where and When	Sales	QC	NRMCA has a sample pre-construction conference checklist developed in partnership with the American Society of Concrete Contractors. A sample pre-pour conference is provided at the end of this document. NRMCA also has a sample preconstruction concrete
				acceptance testing checklist that highlights issues related to proper acceptance testing.
Job Start	Advance notice of first delivery	Sales	QC	Pre-test special materials for specification compliance. Review plant handling of materials (for example, pre- wetting of lightweight aggregate to be used in pump placements). Correctness of batching information.
	Placement schedule	Dispatcher	QC	QC representative reviews the next day's orders for correct mix use and assigns QC field personnel on basis of job priorities and the type of concrete ordered.
	Test reports from independent lab	QC Mgr.	QC Staff	Log test data; investigate causes of strength fluctuations and other job problems.
Job in progress	Customer comments on product performance	QC Mgr.	Management	Weekly review of product performance; recommend action as needed to maintain specification compliance, product uniformity, and customer satisfaction.
	Driver Notes on Delivery Ticket	Operations	QC	Notes on slump control, the addition of retempering water or admixtures, and testing practices. Customer-related safety issues must receive immediate attention.
Job Completion	Summary of test data; statistical evaluation	QC	Management Operations Sales	Review of performance level of plants. Recommendations for mix optimization in future projects. Suggestions for promotional use of job data.

Promotion and Industry Representation

The promotional value of a company's quality control operation can be more fully realized through its involvement in various activities such as

1. Promoting the company's business by demonstrating a sound technical knowledge of its products and applicability to the customer's needs;

- 2. Improving the handling of the product by the customer, and the testing by others, of the company's concrete;
- 3. Working toward wider use of concrete by owners, designers, and builders.

Promoting the Company Business

- Presentation to customers of successes on previous major or special projects, including performance data of concrete mixtures used on projects for strength, durability, or other properties.
- Demonstration of the scope and qualifications of the company's quality control organization, including reference to the credentials of its personnel and laboratory.
- Documentation of plant and mixer inspection schedule and plant certification, if applicable.
- Assistance to customers toward cost efficiencies and quality improvements in placing and finishing concrete.
- Distribution of technical literature, such as the NRMCA Concrete In Practice brochures and other publications with the company imprint, as applicable to various job situations.

Promoting Good Practices in Handling and Testing of Concrete

- In conjunction with other concrete producers, and with assistance from outside organizations, schedule seminars for local builders, contractors, and concrete finishers in which the basics of quality concrete and proper practices for obtaining strong, durable, and defect-free concrete are explained. Suitable subjects include control of mixing water content; the importance of air-entrainment; cold and hot weather concreting; crack prevention in flatwork through correct joint design; and benefits of proper curing of concrete.
- Finishing demonstrations emphasize the importance of correct timing of finishing operations.
- Demonstration with local testing agencies on correct testing practices and discussion of adverse effects of various improper testing procedures.

Promoting Uses of Concrete and Realism in Concrete Specifications

- In presentations directed at owners, designers, and builders, and with engineering support from industry associations, explain the advantages and efficiencies of using concrete in various applications including tilt-up construction; city street and parking lot pavements; thermal insulation value due to concrete mass.
- Sponsor manufacturers' presentations on innovations in the use of various supplementary cementitious materials and chemical admixtures and benefits imparted to handling characteristics; hot weather performance of concrete; and durability of concrete. In general, the versatility of concrete as a construction material should be demonstrated.
- Schedule panel discussions on realism in concrete specifications and the promotion of performancebased specifications, to address cost-effective use of local materials; the need for appropriate tolerances in strength, durability, and various fresh properties such as slump and air-entrainment; reduction in job mix variables for optimum plant control of concrete; limitations of the watercement ratio concept in concrete mixture design and field control of concrete; and sampling and testing of concrete -- the right way.
- Suggest standard practices for ordering concrete with appropriate reference to ACI and ASTM standards that will help ensure that concrete of the proper quality level will be provided for typical local uses in public, commercial and residential construction.

Company Representation in Industry Groups

- Technical Industry Committees: Membership in these provides participation in efforts of improving industry standards and of technical specifications on concrete including those of governmental agencies. The networking benefits from this process are invaluable.
- Specification-Writing Groups: These offer a direct forum for presenting the industry point of view on existing and upcoming standards governing materials specifications and methods of test. Membership on ACI and ASTM Technical Committees and regular attendance at their Conventions. Participation in local ACI Chapters.
- Professional Associations: Personal involvement in these, and the presentation of special programs, serve to advance the reliance by design professionals on concrete as a versatile and dependable building material.
- Membership on the technical committees of NRMCA and state ready mixed concrete association where local and national industry initiatives can be better progressed through larger industry groups rather than individual company initiatives.

Topics for Personnel Instruction

Quality Control Staff	
Sampling and testing of concrete and concrete materials	Proportioning concrete mixes; trial batches
Batch data preparation and analysis	Laboratory procedures
Mix design Submission	Laboratory quality control
Batch plant and mixer inspection	Troubleshooting and report writing
Quality limits and action on non-compliance	Schedule of testing and job priorities
Investigation of abnormal test results (in-house and other)	Processing and filing of test reports
Statistical evaluation of strength data	Specification review
Communications with customers	Innovations in concrete technology
Job site control functions	Safety procedures
Slump control procedures	
Plant Operators	Concrete Delivery Professionals
Basic concrete technology	Basic concrete technology
Types of concrete and concrete materials	Types of concrete and concrete materials
Aggregate moisture tests and adjustments	Mixing requirements, initial and after water additions
Effects of changes in materials (gradation; relative	Control of slump and air
density)	Company policy on job site water additions
Slump and air control procedures	Truck and mixer operation, maintenance, and production
Plant inspection (NRMCA Plant Check list)	of concrete Testing methods and recognizing improper
Company policy on handling of returned concrete	procedures
Disposition of misbatched loads	Company policies on the handling of returned concrete of apparently misbatched loads
Inventory taking and potential causes of inventory losses	Factors impacting concrete due to ambient temperature
Mechanics of scale train and other batching equipment	Correct practices in handling and finishing concrete
Yield adjustments on lightweight concrete	Handling of customer complaints about product quality
Quality control procedures by materials handlers	Response to rejection of concrete at the site
Response to rejection of concrete loads	Delivery tickets and jobsite notes
CER NDMCA DE LATE OPER L'ERR MUNICI	Environmental regulations – delivery and jobsite
SEE NRMCA PLANT OPERATOR MANUAL	Safety – driving and personal
	SEE NRMCA CDP MANUAL
Dispatcher/Office Personnel	Sales Representatives
Basic concrete technology	Basic concrete technology
Types of concrete and concrete materials	Types of concrete and concrete materials
Slump and air control procedures	Mix identification system
Mix identification system	Specification review
Handling of customer complaints and claims regarding product quality	Handling of customer complaints and claims regarding product quality
Response to rejection of concrete at the site	Response to rejection of concrete at site
Company policy on handling of returned concrete	Testing methods and recognizing improper procedures
Within-company communications	Within-company communications
	Slump and air control procedures
	Strength test reports and promotional use
	Innovations in concrete technology - selling added value

Sample Quality Control Plan

Some specifications require the contractor or the material supplier to submit a Quality Control (QC) Plan, which describes the quality control system and processes that will be used to ensure the delivery of a uniform product that meets the specification requirements. Besides outlining the QC functions of the contractor and material supplier, it identifies the responsibilities of the various parties involved and can serve as a useful document in the event of a dispute.

This Sample QC Plan is related to the responsibilities of a concrete producer and is intended to serve only as an example. Producers developing their individual plan should determine what are reasonable inspection and testing frequencies depending on the nature of their production process and the quality and uniformity of their locally available materials. The minimum content of the plan should be established according to the requirements of the job specifications. Once a QC plan has been developed for a particular plant, it is easily modified to suit the purposes of other specifications.

THE READY MIXED CONCRETE COMPANY PO Box 5555, Anytown, ST 55555 Phone (555) 555-5555

April 22, 2022

QUALITY CONTROL PLAN

Project	Bridge Deck on I 95 at SR 250
Project ID	Project # 97-890
Bid Items	Bridge Deck, Headwalls
Contractor	The Concrete Contracting Company
Material Supplier	The Ready Mixed Concrete Company
Product	Ready Mixed Concrete
Compiled by	Mr. C.L. Smith
Date	April 22, 2022

TABLE OF CONTENTS

 Page Number

 GENERAL INFORMATION

 COMPANY INFORMATION
 Personnel

 PERSONNEL
 Materials Testing Facilities

 MATERIALS
 Source of Materials

 Source of Materials
 Certification Documents

 Material Handling
 Material Handling

 Process Control
 Inspections

 Quality Control Tests and Frequency
 Non-Complying Material and Corrective Action

 Reports, Statistical Data, and Charts
 Documentation and Records

GENERAL INFORMATION

COMPANY INFO	RMATION			
Company Name	ny Name The Ready Mixed Concrete Company			
Address PO Box 5555, Anytown, ST 55555				
Phone (555) 999	9-9999 Fax (666) 999-9998		
PERSONNEL				
District Manage	r: <u>Mr. J.R. Ewing</u>	Phone (555) 111-1111	Email:	jewing@rmc.com
QC Supervisor	Mr. C.L. Smith	Phone (555) 222-2222	Email:	csmith@rmc.com
Plant Operator:	Mr. E.L. Gardener	Phone (555) 333-3333	Email:	egardener@rmc.com
Technician:	Ms. T.R. Wright	Phone (555) 444-4444	Email:	twright@rmc.com
Technician	Mr. J.F. White	Phone (555) 555-5555	Email:	jwhite@rmc.com
MATERIALS TES	TING FACILITIES			
Name <u>T</u>	The RMC Testing Lab			
Location 8	88 First Street, Watertown	, ST		
Lab Manager N	Ar. T.W. Walls	Phone (555) 345-6789	Email:	twwalls@rmctest.com

MATERIALS

SOURCE OF MATERIALS

This information is provided with the mixture submittal for the project

CERTIFICATION DOCUMENTS

Cement

Manufacturers Certification - Mill Test Reports and ASTM C917 reports will be maintained on file.

Fly Ash

Suppliers Certification - will be maintained on file. Bag samples of fly ash from each shipment will be stored for 1 year after termination of the project.

Water and Ice

City water will not be tested. The Ice Company uses city water and it will not be tested

Fine Aggregate

Producers certification including the following information will be maintained on file:

- Type of aggregate
- Absorption

- Grading
- Fineness Modulus
- Relative Density
- ASTM C 33 requirements

Absorption

•

٠

Bulk Density

ASTM C33 requirements

Coarse Aggregate

Producers certification including the following information will be maintained on file:

- Type of aggregate
- Grading
- Nominal Maximum Size or Size Number
- Relative Density

Chemical Admixtures

Manufacturers Certification for conformance with ASTM C494 and C260 will be maintained on file.

MATERIAL HANDLING

Material	Delivery to Plant	Storage to mixer
Cement	Trucked from terminal to plant in dry bulk tankers, pneumatically conveyed to overhead waterproof silos.	Gravity feed from silo to weigh hopper. Discharged on belt into mixer
Fly ash	Trucked from supplier to plant in dry bulk tankers, pneumatically conveyed to overhead waterproof silos.	Gravity feed from silo to weigh hopper. Discharged on belt into mixer
Fine Aggregate	Truck transport from pit to plant stockpile. Rubber tire loader from stockpile to aggregate loading hopper.	Conveyor belt from aggregate loading hopper to aggregate weigh hopper, gravity fed to conveyor belt to mixer.
Coarse Aggregate	Truck transport from pit to plant stockpile. Rubber tire loader from stockpile to aggregate loading hopper.	Conveyor belt from aggregate loading hopper to aggregate weigh hopper, gravity fed to conveyor belt to mixer.
Chemical Admixtures	Liquid admixture delivered to plant in bulk truck tankers and pumped to water-tight above- ground storage tanks which are clearly labeled.	Admixture is pressure fed into volumetric measuring devices with sight gages and pressure fed into the batch water line for introduction to mixer

PROCESS CONTROL

INSPECTIONS

Items	Check for	Frequency	Personnel
Scale Calibration	Calibration	1 / 6 months	ELG
	Maintenance tolerance		TRW/JFW
Water batching devices	Calibration	1 / 6 months	ELG
	Batching accuracy and leaks		TRW/JFW
Admixture dispensers	Calibration	Annual	TRW/JFW
	Batching accuracy and leaks		TRW/JFW
Central mixer	Visual inspection of blades & buildup		TRW/JFW
	C94 uniformity tests		ELG/JFW
Aggregate stockpiles	Visual inspection of segregation and contamination		TRW/JFW
Cementitious material bins or silos	Visual inspection for weather- tightness and leaks		TRW/JFW
Conveyor belts and rollers	Visual inspection for wear and alignment		TRW/JFW
Aggregate moisture meters	Check calibration		ELG
Trucks	Visual inspection of blades & buildup		TRW/JFW

QUALITY CONTROL TESTS AND FREQUENCY

	Fine Aggregate	Coarse Aggregate	Fresh Concrete
Sampling Method	ASTM D75	ASTM D75	ASTM C172
Location*			
Personnel	JFW	JFW	JFW/TRW
Item	Method	Frequency*	
Fine Aggregate	1	1	
Grading	ASTM C136		
Moisture	ASTM C566		
Coarse Aggregate	1		
Grading and FM	ASTM C136		
Moisture	ASTM C566		
Fresh Concrete			
Slump	ASTM C173		
Air Content	ASTM C231		
Yield	ASTM C138		
Temperature	ASTM C1064		
Compressive	ASTM C31		
Strength	ASTM C39		
	4 cylinders tested 2		
	each at 3 or 7 and 28		
	days.		

* Location and Testing frequency will be set by the company

Test	Control Criteria*	Corrective Action
Fine aggregate		
Grading		When two consecutive tests indicate out of spec material, contact supplier.All out of spec material will be separated and marked to prevent inadvertent use.
Fineness Modulus		Make changes to mixture proportions and notify supplier
Moisture		Make necessary adjustments to batch weights
Coarse aggregate		
Grading	Same as fine aggregate	
Moisture		Make necessary adjustments to batch weights
Fresh Concrete		
Slump		Plant operator will be notified to make proper adjustments.
Air Content		Same as for slump
Temperature		Report to plant, use ice/hot water as needed to maintain target temperature. Adjust mix for water demand/set time
Compressive Strength		 Look for correlations with C917 and if needed notify cement supplier. Check the cementitious materials batchers for accuracy. Check whether the 3 or 7-to-28 day strength gain is within the typical range for that mixture. Increase the cement content or use admixtures to increase the strength level.

NON-COMPLYING MATERIAL AND CORRECTIVE ACTION

*Control limits are not to be confused with specification tolerances and will be set by the company

REPORTS, STATISTICAL DATA, AND CHARTS

Fine Aggregate Grading

Report: Test results will be recorded on a preapproved report form.

Chart: Individual size fractions will be plotted on a Run Chart with the control limits at 10% of the specification range as follows:

Percent Passing		
Spec. Range	Control Range	
100	100	
95 - 100	95.5 - 100	
85 - 100	87.5 - 100	
65 - 97	68 - 94	
25 - 70	29 - 66	
5 - 35	8 - 32	
0 - 7	1 - 6	
Max. 4	3	
	Spec. Range 100 95 - 100 85 - 100 65 - 97 25 - 70 5 - 35 0 - 7	

Coarse Aggregate Grading

Report: Test results will be recorded on a preapproved report form.

Chart: Individual size fractions will be plotted on a Run Chart with the control limits at 10% of the specification range as follows:

Sieve	Percent Passing		
Size	Spec. Range Control Range		
1 ½ in.	100	100	
1 in.	95 - 100	95.5 - 100	
¹⁄₂ in.	25 - 65	29 - 61	
3/8 in.	20 - 40	22 - 38	
No. 4	0 - 10	0 - 9	
No. 8	0 - 5	0 - 4.5	

Air Content

- *Report:* Test results will be recorded on a preapproved report form.
- *Chart:* Air content will be plotted on a Run Chart with control limits of $\pm 1.2\%$ for specified air content greater than 5%.

Slump

- *Report:* Test results will be recorded on a preapproved report form.
- *Chart:* Slump will be plotted on a Run Chart with control limits of ± 0.75 inch for specified slump less than 4 inches and ± 1.50 inches for specified slump greater than 4 inches.

Temperature

Report: Temperature will be recorded on a preapproved report form

Chart: Temperature will be plotted on a Run Chart with control limits of $\pm 10^{\circ}$ F of design value for the mixture. If they are exceeded mix adjustments may be needed to address water demand, set time.

Compressive Strength

Report: Test results will be recorded on a preapproved report form

Chart: Test results (average of 2 cylinders) for 3 or 7 day strengths will be plotted on a Run Chart with control limits as ± 3 standard deviation ($\pm 3S$).

Individual test results and the running average of three consecutive 28-day strength results will be plotted on Run Charts. The control limits for the individual test results will be $\pm 3S$. The control limits for the running average of 3 tests will be $[\pm 3 \times (S \div \sqrt{3})]$, where S is the standard deviation of individual test results.

Standard deviation (S) will be calculated from at least 15 tests of the same class of concrete. Standard deviation will be recalculated when 30 tests are accumulated. The control limits will be updated when 30 new test results are obtained.

DOCUMENTATION AND RECORDS

Records will be filed:

Location First Street Plant, 888 First Street, Watertown, ST

Contact Mr. E.L. Gardener

Phone (555) 333-3333 Email: egardener@rmc.com

- Quality Control Plan
- Approved Concrete Mix Designs
- Project Specifications
- Plant Information and Certification
- Scale Calibration Records
- Plant Inspection Reports
- Truck Inspection Reports
- Personnel Certification
- Laboratory Accreditation
- Material Certifications
- Delivery Tickets
- Reports of quality Test Results
- Statistical data and charts for the following quality test data
 - Fine aggregate grading
 - Coarse aggregate grading
 - ➢ Air content
 - > Slump
 - ➢ Temperature
 - Compressive strength
 - > Other tests required by specification

Additional References

- 1. Improving Concrete Quality, K H. Obla, published by CRC Press, Taylor& Francis Group, 2015.
- Quality Management System for Ready Mixed Concrete Companies, William B Twitty, P2P Steering Committee, NRMCA, <u>www.nrmca.org/p2p</u>
- 3. ACI 121R, Quality Management System for Concrete Construction
- 4. Concrete Mix Design, Quality Control and Specification, 4th Edition, Ken W. Day, James Aldred, Barry Hudson published by CRC Press, Taylor& Francis Group, 2014.
- 5. PCA Design and Control of Concrete Mixtures

Sample Forms

The following sample forms can be customized and developed by company's specific to their needs

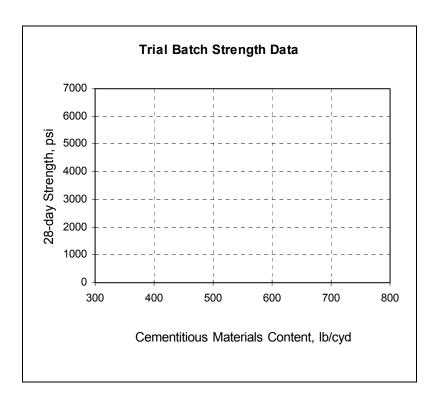
- Specification Review
- Mix Design Report
- Report of Concrete Mix Design Laboratory Trial Batch Data
- Submittal for Strength According to ACI 318 Requirements
- Report of Plant and Truck Inspection
- Quality Control Report Aggregate Grading
- Quality Control Report Concrete Tests
- Report of Truck Delivery Analysis
- Report of Weather Data
- Report of Jobsite Analysis
- Report of Material Inventory

REVIEW OF SPECIFICATION

Proj	ject							
Date	e							
Esti	mated Round T	Trip Time		_ Type of Con	struction			
			-	Mix 1	Mix 2	Mix 3	Mix 4	
1.	Strength requ	irement, psi	-					
2.	Estimated cu	bic yards	<u>-</u>					
3.	Minimum cer	ment factor						
4.	Maximum wa	ater-cement rati	0					
5.	Type of ceme	ent	-					
6.	Air content w	with tolerance	-					
7.	Slump requir	ement	-					
8.	Fine aggrega	te (natural or m	anufactured)					
9.	Coarse aggre	gate size	-					
10.	Admixtures	AEA	-					
		Retarder	-					
		Water Red	lucer					
			Chloride/Accelerator					
		HRWRA	-					
		Fly Ash	-					
		Slag Silica Fum	-					
		Other						
11	Governing star							
	-		whom					
		-						
	•	-	Requirements					
	•	l plan required	•					
	Possible placir		Dump from truck					
	F	•	e and bucket (size)					
			Pump make and size					
			Belt conveyor					
16.	Comments on	Specifications_						
17.	Job Site Curin		Concrete Construction					
		0	Test Cylinders					
18.	Variance need	ed	, and a second sec					

SAMPLE MIX DESIGN REPORT

Concrete Supplier								
Project	C	Contractor						
Mixture Identification		S	Specified Strength, <i>f</i> ' _c ps					psi
Specified Slump:	inche	es Sj	pecif	ied Air (Content			_%
Required average strength, $f'_{\rm cr}$								
Based on past perfor	mance	records (rep	oort a	ttached))		psi	
□ New mix (trial batch	n report	attached)					psi	
MATERIAL PROPERTIES AND SOUL	RCE							
Cementitious Material	Туре	:		Sou	rce		Spec	ific Gravity
Cement								
Pozzolan/Slag								
Admixtures	Name	<u>,</u>		Sou	rce		Do	sage, fl.oz.
		-		~ ~ ~ ~			D054ge, 11.02.	
Aggregate Type	Sou	ırce		Sp. Gr)S.,	Fine -	Coarse -
No. 1				SSD	9	0	FM	DRUW, pcf
No. 2								
No. 3								
<u> </u>]	BATCH QUA	NTIT	TIES				
Material		Quantities	Quantities per cu.yd. Abs. Volu			Volu	me, cu.ft.	_
Cement, lb.								
Mixing water, gal (
Pozzolan/Slag, lb.								
SSD Aggregate 1, 1 SSD Aggregate 2, 1								
SSD Aggregate 3, 1								
Air, percent								
TOTAL								_
Comments:								
Signature:						Date	e:	
Title:								
Organization:								


((((NRMCA

SAMPLE REPORT OF CONCRETE MIX DESIGN - LABORATORY TRIAL BATCH DATA

Laboratory		Date		
Address				
For Company				
Project				
SOURCE OF MATERIALS				
Cement	_		Type	
Pozzolan/Slag			Type	
Fine Aggregate			Type	
Coarse Aggregate			Max. Size	
Admixtures				
		TIES FOR 1 CUBIC YA	RD	
Material	No. 1	No. 2	No. 3	No. 4
Cement, lb.				
Fly Ash, lb.				
Mixing water, lb.				
SSD Sand, lb.				
SSD Gravel, lb.				
AEA, oz.				
w/cm ratio				
	Fresh C	CONCRETE PROPERTI	ES	
Batch Size, cu.ft.				
Air Tomn ⁰ F				
Concrete Temn ⁰ F				
Slumn inches				
Air Content, %		***************************************		
Unit Weight, lb./cu.ft.		***************************************		
Design Yield, cu.ft.				
Actual Yield, cu.ft.				
	Concrete	STRENGTH RESULTS	s, psi	
7 day No. 1				
No. 2				
7-day Average				
28-day No. 1				
No. 2				
No. 3				
28-day Average				

Specified Strength, <i>f</i> ' _c	psi	ĺ			
Specified Slump:	inches	Speci	fied Air Conte	nt:	%
Required average strength, $f'_{\rm cr}$				psi	
Recommended cementitious	materials co	ontent		lb./cu.yd.	
Recommended w/cm ratio					
Comments:					

Signature:	Date:
Title:	

Company _____ Past Project Specified Strength, $f'_{\rm c}$ psi Mixture Identification Specified Slump: ______inches Specified Air Content: _____% Testing Period **SOURCE OF MATERIALS** Cement Type Fine Aggregate Type Coarse Aggregate ______ Max. Size _____ Admixtures SUMMARY OF STRENGTH TEST RESULTS (see over for test results) Number of tests (n) Average 28-day Strength (X) psi Standard Deviation (S) _____psi Coefficient of Variation (V) % **CALCULATION OF REQUIRED AVERAGE STRENGTH** New Project Mixture Identification Specified Strength, *f*′_c _____psi Specified Air Content: _____ % Specified Slump: ______ inches Required Average Strength, f'_{cr} according to ACI 318 Eqn. 5.1 $f'_{\rm cr} = f'_{\rm c} + 1.34.{\rm S}$ = _____psi Eqn. 5.2 $f'_{\rm cr} = f'_{\rm c} + 2.33.\text{S} - 500$ = _____psi

SAMPLE SUBMITTAL FOR STRENGTH ACCORDING TO ACI 318 REQUIREMENTS

Signature:	Date:
Title:	

Test	Date	lts, psi			
No.	Tested	Cyl. 1	Cyl. 2	Cyl. 3	Average
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					
23					
24					
25					
26					
27					
28			L		
29			L		
30					
	e 28-day St	trength ne	:	1	
iver ag	,€ 20-uay SI	n engen, ps			

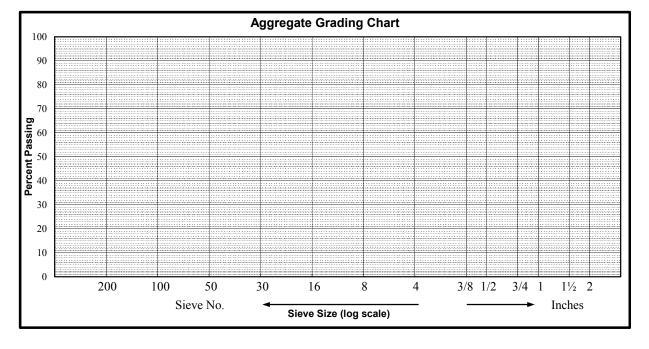
DOCUMENTATION OF STRENGTH TEST RESULTS

SAMPLE REPORT OF PLANT AND TRUCK INSPECTION

Company			
Plant			Inspection Date
ITEMS INSPECTED	CHECK	By	COMMENTS OR CORRECTIVE ACTIONS
	CEME	NTITIO	US MATERIALS SCALES
Calibration			
Maintenance tolerance			
Visual inspection			
Other			
		AGGF	REGATE SCALES
Calibration			
Maintenance tolerance			
Visual inspection			
Other			
	W	ATER I	BATCHING DEVICES
Calibration			
Batching accuracy			
Other			
	I	ADMIX'	TURE DISPENSERS
Calibration			
Batching accuracy and leaks			
Other			
		CEI	NTRAL MIXER
Visual inspection			
Uniformity Tests			
Other			
	A	AGGRE	GATE STOCKPILES
Visual inspection			
Other			
	CEMENT	ITIOUS	MATERIAL BINS OR SILOS
Visual inspection			
Other			
	Con	VEYOR	BELTS AND ROLLERS
Visual inspection			
Other			
	AGG	REGAT	TE MOISTURE METERS
Calibration			
	TRUCK B	ARREL	s (List Truck Numbers)
Visual inspection			
Other			

Signature: ______Title: _____

SAMPLE QUALITY CONTROL REPORT - AGGREGATE GRADING


Company _____

Project _____

Fine Aggregate Sample Original Weight Individual Pass % % Sieves Pass Ret. on Wt. % Sieve Pass Ret. No. 4 3/8 in. 3/8 in. No. 4 8 No. 4 8 16 8 16 30 16 30 30 50 50 100 50 100 200 100 200 Pan 200 FM Total No. 200 wash Wt. before Wt. after Minus No. 200 (wet), % Difference Aggregate Source Aggregate Type Sampled by Date Sampling Location Tested by Date Quantity represented Comments

Si	eves	Indi	vidual	Pass	Pass %		
Pass	Ret. on	Wt.	%	Sieve	Pass	Ret.	
				2 in.			
				1 1/2 in.			
				1 in.			
				3/4 in.			
				1/2 in.			
				3/8 in.			
				No. 4			
				No. 8			
	Total				FM		
		N	lo. 200 v	vash			
Wt. bef	-		_				
Wt. afte	_		_				
Differen	nce _		Minus No. 200 (wet), %				
	ate Source						
	ate Type						
Sample	d by _		Date				
Sampli	ng Locatio	n					
Tested	by			Date			
Quantit	y represen	ted					
Quantit							

Coarse Aggregate Sample

Signature: _____

Date:

Title:

SAMPLE QUALITY CONTROL REPORT - CONCRETE TESTS

Company						
Project						
Mixture Identification	1					
Specified Strength, f'	c psi	Required A	Average Strength, f'_{cr}	psi		
Specified Slump:	inche	es Specified	Air Content:	0⁄/0		
Sampled by		Date Samp	oled			
Truck No:		Location				
FRESH CONCRETE PI	ROPERTIES:					
Slump	in.	Yield Cal	culations:			
Air Content	%	Weight of	Weight of Batch			
Concrete Temperatu	re °F	Concrete	Concrete Unit Weight			
Ambient Temperatur	reºF	Yield	Yieldyd			
STRENGTH TEST RES	SULTS					
Age	Cylinder 1	Cylinder 2	CYLINDER 3	AVERAGE		
1 1			1			

1 day		
3 day		
7 day		
14 day		
28 day		

OTHER TEST DATA

OBSERVATIONS AND COMMENTS

Signature: ______Title: _____

SAMPLE REPORT OF TRUCK DELIVERY ANALYSIS

Project			Date			
Ticket No	Truck. No		Total Cubic Yard	S		
Time Batched	Time Arriva	l at Job	Time Discharged			
Time Sampled	Time Tested					
Sampled at	\Box End of Chute	□ End of Pump H	ose 🛛 Other			
Ambient Temp	Concrete Temp.	Air	Slump	Unit Weight		
Number of Cylinder	s made	Stored at				
Notes and Comment	S					
			nature			
	Truck. No					
Time Batched	Time Arriva	l at JobTime Discharged				
Time Sampled	Time Tested					
Sampled at	\Box End of Chute	□ End of Pump H	ose 🗆 Other			
Ambient Temp	Concrete Temp.	Air	Slump	Unit Weight		
Number of Cylinder	s made	Stored at				
Notes and Comment	S					
		<u> </u>				

Signature _____

Project		Date								
Project Location										
Number of cubic yards	8	Time of Placement								
TEMPERATURE RECO	RD									
Midnt	6 a.m	Noon	6 p.m							
1 a.m	7 a.m	1 p.m	7 p.m							
2 a.m	8 a.m	2 p.m	8 p.m							
3 a.m	9 a.m	3 p.m	9 p.m							
4 a.m	10 a.m	4 p.m	10 p.m							
5 a.m	11 a.m	5 p.m	11 p.m							
High Temperature		□ Sunny	□ Windy							
Low Temperature		\Box P. Cloudy	□ Calm							
Precipitation										
Forms for concrete pla	at									
Curing for concrete pla	at									
Other Information										

SAMPLE REPORT OF WEATHER DATA

Signature _____

Sample Report of Jobsite Analysis

Project _____

Contractor _____

Mix ID_____

Date	Truck	Tkt.	Cubic	Time					Ambient	Sampled		Con	Comments			
			Yards	Dispatch	Job-site	Start	End	Excess	Temp.	at	Temp.	Slump	Air	Unit Wt.	No. Cyls.	
					arrival	Discharge	Discharge	Time								

Sample Report of Material Inventory

Project					Co	ntractor										
Cubic Ya				Materia	als Requir	ed, tons:	Cement		Fly Ash		Sand		Stone		-	
Date	Cubic	Mix ID	Description	Material Used, tons			Restock, tons				In	ventory of	Comments			
	Yards			Cement	Fly Ash	Sand	Stone	Cement	Fly Ash	Sand	Stone	Cement	Fly Ash	Sand	Stone	

