Concrete in Practice

What, why & how?

CIP 44 - Durability Requirements for Concrete

WHAT are Durability Concerns

Concrete is a versatile construction material that can be used in a wide range of service and environmental conditions. Conditions that can impact the service life of concrete structures should be identified during design and addressed in project specifications. To address durability of concrete, ACI 318, *Building Code Requirements for Structural Concrete*, has specific requirements for concrete for defined environmental exposure conditions. These provisions are covered in Chapter 19 of ACI 318. The following Exposure Categories are covered:

- **F** Concrete exposed to cycles of freezing and thawing
- **S** Concrete exposed to water soluble sulfates
- **C** Conditions requiring corrosion protection of reinforcement
- **W** Concrete members in contact with water

Similar exposure categories are addressed in ACI 332, *Residential Code Requirements for Structural Concrete*. The durability requirements of ACI 318 are covered in specification format in ACI 301, *Specifications for Structural Concrete*

Additional durability considerations, such as cracking due to drying shrinkage or thermal gradients, abrasion, and alkali aggregate reactions, should be considered by the engineer designing the structure.

WHY should Durability be Addressed

Buildings must comply with the locally adopted Building Code; generally these refer to ACI 318 for structural concrete. Transportation structures must comply with the requirements of state highway agencies. Appropriate durability requirements in specifications minimize the potential for deterioration of concrete to assure public safety and provide the service life of concrete structures as designed. If owners want to further extend service life, design and specifications should exceed the minimum stated in building codes. When the defined exposure conditions do not exist, the requirements related to these conditions should not be specified as this can increase cost with no real benefit.

HOW Should Durability be Addressed

Concrete that has a low permeability to water and dissolved chemicals will generally be durable in most exposure conditions. Permeability of concrete is impacted by water-to-cementitious materials ratio (w/cm), and type and proportions of cementitious materials used in the mixture. The w/cm is the ratio of the weight of mixing water to the weight of all cementitious materials. For durability, ACI 318 requires specifying a max w/cm and min specified strength, f'_{cc}. Since w/cm cannot be verified when concrete is delivered, strength tests are used as the basis of acceptance. The Code cautions that specified strength, f'_{cc}, should be reasonably consistent with the w/cm required for durability.

Supplementary cementitious materials (SCMs), like fly ash, slag cement, and silica fume reduce the permeability compared to mixtures that contain only portland cement. SCMs also make concrete more resistant to chemical factors that impact concrete durability, like sulfate attack and alkali aggregate reaction.

ACI 318 defines Exposure Classes (EC) within each Exposure Category based on the severity of exposure. Increasing severity is represented by higher numerical value in the EC designation. The numeral “0” is used when the condition does not apply. The designer is required to assign each durability EC for each member type in a structure. This sets the basis and lends clarity to the requirements for concrete. It can avoid problems while accepting bids and during construction.
Freezing and thawing exposure (Category F).
Four ECs are defined:
- **F0** - not exposed to freezing conditions;
- **F1** - limited exposure to water (lower level of saturation) when exposed to freezing;
- **F2** - frequent exposure to moisture (higher level of saturation) when exposed to freezing; and
- **F3** - same as F2 and deicing chemicals are applied.

Corrosion protection of reinforcement (Category C).
Three ECs are defined:
- **EC C0** - members dry in service;
- **EC C1** - exposed to moisture; and
- **EC C2** - exposed to moisture and to an external source of chlorides.

Reinforcement embedded in concrete is protected from corrosion because of the high pH. Corrosion initiates when chlorides exceed a threshold concentration or the cover concrete carbonates. For ECs C0 and C1 there is no max w/cm. For EC C2, the Code requires a max w/cm and min f'_{c}. For reinforced concrete, the Code has max limits on water-soluble chloride ion concentration, expressed as percent by weight of cementitious materials, for each EC. Chloride limit for all prestressed (including post-tensioned) concrete is 0.06%. Chloride limits will generally preclude the use of chloride-based admixtures in reinforced and prestressed concrete.

Corrosion inhibiting admixtures are effective for improving corrosion resistance of reinforcement.

Concrete in contact with water (Category W).
Three exposure classes for concrete are defined:
- **W0** - dry in service;
- **W1** - in contact with water; low permeability not required;
- **W2** - in contact with water; low permeability required.

For W2 max w/cm and min f'_{c} apply. For W1 and W2, requirements for alkali aggregate reactivity should be addressed in the specification (see CIP 43).

There may be other durability issues that the engineer of record needs to address and specify for concrete. More details on durability and methods to minimize deterioration are available in other references.

<table>
<thead>
<tr>
<th>Exposure Class</th>
<th>Max w/cm</th>
<th>Min f'_{c}, psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>F0, S0, W0, C0, C1, W1</td>
<td>None</td>
<td>2500</td>
</tr>
<tr>
<td>F1</td>
<td>0.55</td>
<td>3500</td>
</tr>
<tr>
<td>S1, W2</td>
<td>0.50</td>
<td>4000</td>
</tr>
<tr>
<td>S2, S3 opt 1, F2, F3 (plain)</td>
<td>0.45</td>
<td>4500</td>
</tr>
<tr>
<td>C2, F3 (reinforced), S3 opt 2</td>
<td>0.40</td>
<td>5000</td>
</tr>
</tbody>
</table>

References