

Lionel Lemay, PE, SE, LEED AP Sr. VP, Sustainability





# Environmental Product Declaration (EPD)

 Provide <u>quality assured</u> and <u>comparable</u> information regarding environmental performance of a <u>product and/or service</u>

| Туре | Standard  | 3 <sup>rd</sup> party<br>reviewed | Endorsement | Shorthand            |  |  |  |  |
|------|-----------|-----------------------------------|-------------|----------------------|--|--|--|--|
| - 1  | ISO 14024 | Yes                               | Yes         | Eco-label            |  |  |  |  |
| II   | ISO 14021 | No                                | Yes         | Self-<br>declaration |  |  |  |  |
| Ш    | ISO 14025 | Yes                               | No          | Nutrition label      |  |  |  |  |

# Type III EPD



| PCR Impact Category                                          | Impact                 | Units/m2            |  |  |  |
|--------------------------------------------------------------|------------------------|---------------------|--|--|--|
| US TRACI                                                     |                        |                     |  |  |  |
| TRACI, Acidification Potential                               | 2.08                   | mol H+ Equiv.       |  |  |  |
| TRACI, Eutrophication Potential (Water & Air)                | 0.012                  | kg N-Equiv.         |  |  |  |
| TRACI, Global Warming Potential                              | 11.33                  | kg CO2-Equiv.       |  |  |  |
| TRACI, Ozone Depletion Potential                             | 3.3 x 10 <sup>-7</sup> | kg CFC 11-Equiv.    |  |  |  |
| TRACI, Smog Air                                              | 6.2 x 10 <sup>-7</sup> | kg NOx-Equiv.       |  |  |  |
| CML 2002                                                     |                        |                     |  |  |  |
| CML2002, Acidification Potential                             | 0.041                  | kg SO2-Equiv.       |  |  |  |
| CML2002, Eutrophication Potential                            | 0.01                   | kg Phosphate-Equiv. |  |  |  |
| CML2002, Global Warming Potential (GWP 100 years)            | 11.55                  | kg CO2-Equiv.       |  |  |  |
| CML2002, Ozone Layer Depletion Potential (ODP, steady state) | 2.9 x 10 <sup>-7</sup> | kg R11-Equiv.       |  |  |  |
| CML2002, Photochem. Ozone Creation Potential (POCP)          | .004 kg Ethene-Equir   |                     |  |  |  |
| CML2002, Abiotic Depletion                                   | 9 x 10 <sup>-7</sup>   | kg Sb-Equiv.        |  |  |  |

# Life Cycle Assessment Technique to assess the

- Technique to assess the environmental aspects and potential impacts associated with a product, process, or service.
- Part of the <u>ISO 14000</u> environmental management standards









# Why Bother?

- Building owners asking for EPDs
  - □ i.e., report your carbon footprint
- LEED v4
  - Industry average EPDs
  - Plant specific EPDs
- Required by Architecture 2030
  - Challenge for Building Products
- IgCC whole building LCA
  - Material EPDs can plug into LCA







#### PCR for Concrete

The Carbon Leadership Forum Industry-Academic Collaborative Research































www.carbonleadershipforum.org

#### PCR Committee

#### MEMBERS AFFILIATION

Alicia Daniels Uhlig GGLO Architecture
Jeff Davis Central Concrete

Francesca DesMarais Architecture 2030 (observer)

Chris Erickson Climate Earth

Dean Frank Precast/Pre-stressed Concrete Institute

Heather Gadonniex UL Environment Won Lee Forell/Elsesser

Lionel Lemay National Ready Mix Concrete Association

Greg McKinnon Stoneway Concrete

Helena Meryman Consultant

John Ochsendorf MIT

Carlo Strazza University of Genoa Mark Webster Simpson Gumpertz & Heger

www.carbonleadershipforum.org

# PCR Development Process

| Task                    | Date              |  |  |  |  |  |
|-------------------------|-------------------|--|--|--|--|--|
| Committee Formed        | May 2011          |  |  |  |  |  |
| PCR Public Draft Issued | February 14, 2012 |  |  |  |  |  |
| First Public Comments   | March 31, 2012    |  |  |  |  |  |
| Second Public Comments  | September 5, 2012 |  |  |  |  |  |
| Final Version           | November 2012     |  |  |  |  |  |



#### Declared Unit / Product Description

- 1 m<sup>3</sup> (yd<sup>3</sup>)
- Required
  - Specified compressive strength at age
  - □ 30 MPa (4000 psi) at 28 days
- Optional
  - Exposure class (per ACI 318)
  - Design slump or slump flow
  - Other performance characteristics





#### Excluded from System Boundary

- Production, manufacture and construction of buildings
- Production and manufacture of concrete production equipment, concrete delivery vehicles, earthmoving equipment, and laboratory equipment
- Personnel-related activities (travel, furniture, office supplies)

#### Impact Categories (2 Levels of Detail)

- Carbon Footprint
- Global Warming Potential
- ISO compliant Type III EPD
- Total primary energy consumption
- Water Use
- Climate Change (Carbon Footprint)
- Ozone Depletion
- Acidification Air
- Eutrophication Air
- Eutrophication Water
- Photochemical Ozone Creation

#### Optional Additional Information

- Energy from waste recovery
- Total Water Use
- Total Waste Disposed
- Total Waste Recycled
- Total Waste Used
- Non-renewable Energy
- Renewable Energy
- Bio-mass Energy
- Chemicals of Concern

- Hazardous waste disposed
- Sequestered Carbon
- Particulate Matter
- Ecotoxicity Water
- Ecotoxicity Soil
- Human Toxicity Air
- Human Toxicity Water
- Human Toxicity Soil
- Depletion of Resources

#### Selection of Data

- Plant specific EPD results
- Company weighted average EPD results
- Regional weighted average EPD results
- ISO compliant LCI data from supplier
- ISO compliant industry average LCA / EPD
- CO<sub>2</sub>e: Use defaults published by CLF
- LCI of concrete, Marceau, 2007
- LCI of chemical admixtures (European Fed of Chem Admix)
- USEPA (energy sources)
- US LCI Database (NREL)
- Specific data plant energy use, water use, fuel use etc.

#### Allocation Assumptions

- Emissions from waste incineration (e.g. tires) are considered to be allocated to the original intended use (e.g. cars)
- Emissions from coal power and steel or ferro-silica metal production need not be allocated to the waste products (SCMs)

#### Content of EPD

- The name and address of the manufacturer
- Description of product and declared unit
- A description of the main components
- Name of the EPD program used
- Date the declaration was issued (5 years)
- Which life cycle stages not considered
- Statement regarding data quality and variability

| Impact Category                            | Impacts<br>(SI Units)   | Impacts<br>(US Units)    | Reference |  |  |
|--------------------------------------------|-------------------------|--------------------------|-----------|--|--|
| Total Primary Energy                       | 2957 MJ/m3              | 2.13 MBTU/yd3            | N/A       |  |  |
| Non-renewable                              | 2665 MJ/m3              | 1.92 MBTU/yd3            | N/A       |  |  |
| Renewable                                  | 281 MJ/m3               | 0.21 MBTU/yd3            | N/A       |  |  |
| Batch Water                                | 127 kg/m3               | 210 lbs/yd3              | N/A       |  |  |
| Wash Water                                 | 18 kg/m3                | 30 lbs/yd3               | N/A       |  |  |
| Total Waste Disposed                       | 24 kg/m3                | 40 lbs/yd3               | N/A       |  |  |
| Global Warming Potential                   | 334 kg CO2eq/m3         | 254 kg CO2 eq/yd3        | TRACI     |  |  |
| Ozone Depletion                            | 0.00 kg CFC11 eq/m3     | 0.00 kg CFC11 eq/yd3     | TRACI     |  |  |
| Acidification Potential                    | 0.78 kg SO2 eq/m3       | 0.59 kg SO2 eq/yd3       | TRACI     |  |  |
| Eutrophication Potential Air               | 0.00 kg N eq/yd3        | 0.00 kg N eq/yd3         | TRACI     |  |  |
| Eutrophication Potential Water             | 0.09 kg N eq/m3         | 0.07 kg N eq/yd3         | TRACI     |  |  |
| Photochemical Ozone<br>Createion/Smog      | 0.06 kg C2H6 eq/m3      | 0.05 kg C2H6 eq/yd3      | TRACI     |  |  |
| Human Health Criteria (particulate matter) | 0.49 kg PM10/m3         | 0.38 kg PM10/yd3         | TRACI     |  |  |
| Human Health CF Non-cancer                 | 2.67E-5 CTUconcancer/m3 | 2.03E-5 CTUnoncancer/yd3 | TRACI     |  |  |
| Human Health CF cancer                     | 7.29E-6CTUcancer/m3     | 5.54E-6 CTUcancer/yd3    | TRACI     |  |  |





#### Can we do this for concrete?

- Thousands of mix designs at each plant
- New mix design developed for many projects
- Mix designs change with season
- Mix designs change with material availability
- Do we have upstream data?
- How much will this cost?
- How long will it take?

#### NRMCA EPD Program

- Will certify EPDs
- Review LCAs
- Develop PCRs
- Consistent with other EPD Programs



#### Developing an EPD?

- Select PCR
- Conduct an LCA (critically reviewed)
- Produce draft EPD from LCA
- Submit your LCA report and draft EPD to NRMCA
- NRMCA verifies they meet
  - International standards
  - Selected PCR
  - EPD Program Operator Rules
- If all requirements met, EPD is certified
- Use certified EPD for submittals and marketing



#### Certification Process

- Submit LCA Report
  - Already reviewed by independent reviewer
  - Or have NRMCA review it for you
- Submit Draft EPD
- Submittal Form and Fee
- NRMCA Conducts Initial Review
  - Make corrections if necessary
- NRMCA Sends to Independent Verifier
  - Make corrections if necessary

#### Different Levels of Verification

| Level | Service                                                     | Fee<br>(member) | Fee (non-<br>member) |  |  |  |
|-------|-------------------------------------------------------------|-----------------|----------------------|--|--|--|
| 1     | Critical Review of LCA plus Independent Verification of EPD | \$3500          | \$5000               |  |  |  |
| 2     | Critical Review of LCA*                                     | \$2750          | \$3500               |  |  |  |
| 3     | Independent Verification of EPD (first)                     | \$1050          | \$1800               |  |  |  |
| 4     | Independent Verification of EPD (second or more)            | \$750           | \$1500               |  |  |  |

<sup>\*</sup> No certification with this option

# Independent Reviews for NRMCA?

- Athena Institute
- Carbon Sense Solutions
- Climate Earth
- NSF International
- Can also conduct LCA
  - Contract directly with them
  - Or use other LCA expert

#### Certification

- Meets Requirements:
  - □ ISO 14025
  - Meets PCR
  - Meets NRMCA Program Rules



|                    |                    |         |           |           |             | Service Area: Brentwood (34              |            |                        |                        |                        |                        |                        |                        |                        |              |
|--------------------|--------------------|---------|-----------|-----------|-------------|------------------------------------------|------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|--------------|
|                    |                    |         |           |           |             |                                          | Perf.      |                        |                        |                        |                        | pects                  | AP                     |                        |              |
|                    |                    |         |           |           |             | Mix Code Plant                           | imum 2,000 | 2.155E+03              | 6.871E-02              | 4.504E-03              | GWP<br>2.058E+02       | 3.634E-06              | 1.513E+00              | EP<br>8.143E-02        | 2.50         |
|                    |                    |         |           |           |             | 77/824                                   |            | 3.629E+03              | 7.287E-02              | 4.504E-03              | 4.819E+02              | 6.637E-06              | 3.466E+00              | 1.395E-01              | 4.74         |
|                    |                    |         |           |           |             | 325PC901 Brentwood                       | 2,500      | 2.556E+03              | 6.871E-02              | 4.604E-03              | 3.058E+02              |                        | 2.174E+00              | 9.251E-02              | 3.07         |
|                    |                    |         |           |           |             | 325PC902 Brentwood<br>325PC9D1 Brentwood | 2.500      | 2.552E+03<br>2.231E+03 | 7.287E-02<br>6.871E-02 | 4.504E-03<br>4.504E-03 | 3.056E+02<br>2.529E+02 | 4.249E-06<br>3.634E-06 | 2.173E+00<br>1.786E+00 | 9.197E-02<br>8.243E-02 |              |
|                    |                    |         |           |           |             | 325PC9D2 Brentwood                       | 2,500      | 2.225E+03              | 7.287E-02              | 4.504E-03              | 2.529E+02              |                        | 1.784E+00              | 8.143E-02              | -7           |
|                    |                    |         |           |           |             | 325PC9Q1 Brentwood                       | 2,500      | 2.161E+03              | 6.871E-02              | 4.504E-03              | 2.062E+02              |                        | 1.515E+00              | 1.004E-01              | 176          |
|                    |                    |         |           |           |             | 325PC9Q2 Brentwood                       | 2,500      | 2.155E+03              | 7.287E-02              | 4.504E-03              | 2.058E+02              | 4.571E-06              | 1.513E+00              | 9.997E-02              | 2.75         |
|                    |                    |         | Perf.     |           |             |                                          |            | Impacts                | ;                      |                        |                        |                        |                        |                        | 3.06<br>2.70 |
| Mix Code           | Plant              |         | CS        | TPE       | CWB         | CWW                                      | GWF        | ·                      | ODP                    | А                      | ıΡ                     | EP                     | İ                      | POCP                   | 3.00         |
|                    | 7.                 | ninimum | 2,000     | 2.155E+03 | 6.871E-0    | 02 4.504E-03                             | 2.058E-    | +02 3.                 | 634E-06                | 1.513                  | 3E+00                  | 8.143E-                | 02 2.5                 | 68E+01                 | 3.25         |
|                    | 77                 | naximum | 6,000     | 3.629E+03 | 7.287E-0    | 02 4.504E-03                             | 4.819E     | +02 6.                 | 637E-06                | 3.466                  | 5E+00                  | 1.395E-                | 01 4.7                 | 745E+01                | 2.93         |
| 325PC901           | Brentwoo           | bd      | 2,500     | 2.556E+03 | 6.871E-0    | 02 4.504E-03                             | 3.058E-    | +02 4.                 | 237E-06                | 2.174                  | 1E+00                  | 9.251E-                | 02 3.0                 | )72E+01                | 2.93         |
| 325PC902           | Brentwoo           | od      | 2,500     | 2.552E+03 | 7.287E-0    | 02 4.504E-03                             | 3.056E     | +02 4.                 | 249E-06                | 2.173                  | 3E+00                  | 9.197E-                | 02 3.0                 | )67E+01                | 3.00         |
| 325PC9D1 Brentwood |                    | od      | 2,500     | 2.231E+03 | 6.871E-0    | 02 4.504E-03                             | 2.529E-    | +02 3.                 | 634E-06                | 1.786                  | SE+00                  | 8.243E-                | 02 2.5                 | 72E+01                 | 4.74         |
| 325PC9D2 Brentwood |                    | od      | 2,500     | 2.225E+03 | 7.287E-0    | 02 4.504E-03                             | 2.525E-    | +02 3.                 | 638E-06                | 1.784                  | 1E+00                  | 8.143E-                | 02 2.5                 | 68E+01                 | 3.40         |
| 325PC9Q1 Brentwood |                    | od      | 2,500     | 2.161E+03 | 6.871E-0    | 2 4.504E-03                              | 2.062E-    | +O2 4.                 | 591E-06                | 1.515                  | E+00                   | 1.004E-                | 01 2.7                 | 760E+01                | 3.3          |
| 325PC9Q2           | 325PC9Q2 Brentwood |         | 2,500     | 2.155E+03 | 7.287E-0    | 2 4.504E-03                              | 2.058E-    | 02 4.                  | 571E-06                | 1.513                  | BE+00                  | 9.997E-                | 02 2.7                 | 754E+01                | 3.0h         |
| 325PG9C1           | 325PG9C1 Brentwood |         | 2,500     | 2.536E+03 | 6.871E-0    | 02 4.504E-03                             | 3.047E-    | +O2 4.                 | 147E-06                | 2.170                  | DE+00                  | 8.987E-                | 02 3.0                 | 063E+01                | 334          |
| 325PG9D1           | Brentwoo           | od      | 2,500     | 2.311E+03 | 6.871E-0    | 02 4.504E-03                             | 2.674E-    | +O2 3.                 | 760E-06                | 1.894                  | 1E+00                  | 8.401E-                | 02 2.7                 | 707E+01                | 3.34         |
| 325PG9Q1 Brentwood |                    | 2,500   | 2.344E+03 | 6.871E-0  | 2 4.504E-03 | 2.310E-                                  | -02 5.     | 036E-06                | 1.704                  | 1E+00                  | 1.109E-                | 01 3.0                 | )82E+01                | 3.07                   |              |
|                    |                    |         |           |           |             | 335PC9D1 Brentwood                       | 3,500      |                        | 6.871E-02              |                        | 0.0000                 | 4:178E-06              |                        |                        | 3.07         |
|                    |                    |         |           |           |             | 335PC9D2 Brentwood<br>335PC9Q1 Brentwood | 3,500      | 2.545E+03<br>2.392E+03 | 7.287E-02<br>6.871E-02 | 4.504E-03              | 3.050E+02<br>2.364E+02 |                        | 2.169E+00<br>1.741E+00 | 9.022E-02<br>1.139E-01 |              |
|                    |                    |         |           |           |             | 335PC9Q2 Brentwood                       | 3,500      | 2.389E+03              | 7.287E-02              | 4.504E-03              | 2.363E+02              | 5.178E-06              | 1.740E+00              | 1.133E-01              | 3.14         |
|                    |                    |         |           |           |             | 335PG901 Brentwood                       | 3,500      | 2.898E+03              | 6.871E-02              | 4.504E-03              | 3.635E+02              |                        | 2.602E+00              | 1.010E-01              | 3.61         |
|                    |                    |         |           |           |             | 335PG902 Brentwood<br>335PG901 Brentwood | 3,500      | 2.897E+03<br>2.873E+03 | 7.287E-02<br>6.871E-02 | 4.504E-03<br>4.604E-03 | 3.639E+02<br>3.600E+02 | 4.835E-06<br>4.724E-06 | 2.604E+00<br>2.676E+00 | 1.006E-01<br>9.928E-02 | 3.62         |
|                    |                    |         |           |           |             | 335PG9C2 Brentwood                       | 3,500      | 2.883E+03              | 7.079E-02              | 4.504E-03              | 3.617E+02              |                        | 2.589E+00              | 9.895E-02              |              |
|                    |                    |         |           |           |             | 33SPG9D1 Brentwood                       | 3,500      | 2.642E+03              | 6.871E-02              | 4.504E-03              | 3.217E+02              | 4.324E-06              | 2.292E+00              | 9.328E-02              | 3.22         |
|                    |                    |         |           |           |             | 33SPG9Q1 Brentwood                       | 3,500      | 2.567E+03              | 6.871E-02              | 4.504E-03              | 2.612E+02              | 5.602E-06              | 1.937E+00              | 1.211E-01              | 3.47         |
|                    |                    |         |           |           |             | 335PG9Q2 Brentwood                       | 3,500      | 2.592E+03              | 7.287E-02              | 4.504E-03              | 2.648E+02              |                        | 1.964E+00              |                        | 3.52         |
|                    |                    |         |           |           |             | 340PC901 Brentwood<br>340PC902 Brentwood | 4,000      | 2.804E+03              | 6.871E-02              | 4.504E-03<br>4.504E-03 | 3.464E+02              |                        | 2.473E+00<br>2.490E+00 | 9.961E-02              | 3.466        |
|                    |                    |         |           |           |             | 340PC902 Brentwood<br>340PC9C1 Brentwood | 4,000      | 2.807E+03<br>2.655E+03 | 7.287E-02<br>6.871E-02 | 4.504E-03              | 3.475E+02<br>3.221E+02 |                        | 2.490E+00<br>2.292E+00 | 9.924E-02<br>9.509E-02 | 3.46         |
|                    |                    |         |           |           |             | 340PC9C2 Brentwood                       | 4,000      | 2.654E+03              | 7.287E-02              | 4.504E-03              |                        |                        | 2.292E+00              |                        |              |
|                    | - 1                | - 1     | - 1       | 1 1       | - 1         |                                          |            |                        |                        |                        |                        |                        |                        |                        |              |



# Components of an LCA

- Goal definition and scoping
- Inventory Analysis
- Impact Assessment
- Interpretation

#### Impact Assessment – Key Component

 A Stressor – a set of conditions that may lead to an environmental impact.























Questions?

www.nrmca.org/sustainability

