Sustainability and Concrete Pavements for Real Engineers

Tom Van Dam, Ph.D., P.E., FACI, LEED AP
And
Peter Taylor, Ph.D., P.E.

Concrete Sustainability Conference
April 13, 2010
What’s The Deal With Sustainability?

- I have to confess: I am getting sick of this word!
- Is it a code word for “environmentalism”?
- Is its purpose to simply sell products?
- Is it only being used to advance “sustainability science” giving academics another trough to eat out of?
- Am I just getting old and crabby?
Let’s Keep It Real and Keep It Simple

Sustainability balances:
– Economic considerations
– Environmental considerations
– Social considerations

Over the life cycle!
The Goal: Enhanced Sustainability

Pulling Considering all unevenly takes the system out of balance

Environmental

Social
Sustainable Design

- Sustainable design must consider life-cycle economic, environmental and societal factors
 - Economic factors addressed through life-cycle cost analysis (LCCA)
- It is simply good engineering
 - It entails working with limited resources to achieve design objectives
 - It is not about perfection, but instead about balancing competing, and often contradictory, interests
The Life Cycle: A Key Concept

The 'life cycle' includes all phases of a pavement’s existence including raw material production and transportation, construction, operations, and renewal (preservation, restoration, rehabilitation, and disposal/recycling)

– The sum of these steps - or phases - is the life cycle of the pavement
Cradle-to-Cradle Life Cycle

- Design
- Materials Processing
- Construction
- Operations
- Renewal
- Preservation and Rehabilitation
- Reconstruction and Recycling
Today, Sustainability...

- Is being demanded by a diverse number of agencies, organizations and the public
- Allows the concrete industry to communicate the good that is being done
- Makes concrete more competitive
- Drives innovation
In Addition…

- Sustainability metrics are being developed and will be required on Federally funded projects in the near future
 - Already adopted by some states and local agencies

- A lot of excellent work has been done to characterize sustainable attributes of pavements and more is in the pipeline
Is Asphalt or Concrete a More Sustainable Paving Material?

Yes
- It depends on the context and how sustainability is defined

The models currently lack the accuracy to make a definitive choice
- All studies have caveats and limitations

The situation is dynamic

This is the wrong question!
The Right Question Is “How Can We Make Concrete Pavements Better?”

- Design for the long-run
- Choose the right materials
- Consider operations
- Trust but verify

Design for the Long-Run

- Educate yourself, your colleagues, and all stakeholders
- Use a holistic approach to design – it is not just thickness or long-life
- Design for what you need
 - Context sensitive design (CSD)
- Evaluate innovative features and use those that work
Multiple Design Attributes

- Improved Fuel Economy
- Lower Energy Footprint
- Aesthetically Pleasing
- Light Colored and Cool
- Less Fuel Consumed, Less Water Used, and Less Waste Generated During Construction
- Treat Air Pollution
- Industrial By-Product Use
- Renewal and Recycling
- Improved Stormwater Quality
- Structural Capacity
- Quiet Surface Textures
- Two-Lift Construction

Adapted from Wathne, ACPA
Context Sensitive Design

- Are all designs equally desirable for every situation?
 - Urban versus rural?
 - High-speed versus slow-speed?
 - Arterial versus local?

- Understand the versatility of the material and take advantage of it
 - Thickness and joint spacing are a small part of design
Specific Real-World Examples

- Two-lift construction using materials suited to each layer
 - Example: recycled aggregate and high volume fly ash in bottom lift

- Use aesthetics for urban environments

- Emerging designs may represent “game changing” technologies
 - Ultra-thin overlays
 - Precast/paver systems
 - New Chilean design
Choose the Right Materials

- In 2008, domestic cement production was responsible for approximately 1.5% of U.S. total CO₂.
- Portland cement is responsible for approximately 90% to 95% of the CO₂ and 85% of the energy embodied in concrete.
- Without question, the “carbon footprint” of infrastructure will become more important.
CO$_2$ Emissions and Cement

The graph shows the pounds of CO$_2$/yd3 for different percentages of replacement with SCM (secondary cementitious materials) and cementitious content (lbs/yd3). The data indicates a decrease in CO$_2$ emissions as the percent replacement with SCM increases, suggesting engineering solutions to improve pavement performance.
CO$_2$ Emissions and Cement

Concrete Mixtures for the I-35W Bridge (CI, February 2009)

<table>
<thead>
<tr>
<th>Component</th>
<th>Specified Strength (psi)</th>
<th>Cementitious Materials</th>
<th>CO₂ (lb/yd³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total (lb/yd³)</td>
<td>Portland Cement (%)</td>
</tr>
<tr>
<td>Superstructure</td>
<td>6500</td>
<td>700</td>
<td>71</td>
</tr>
<tr>
<td>Piers</td>
<td>4000</td>
<td>575</td>
<td>15</td>
</tr>
<tr>
<td>Footings</td>
<td>5250</td>
<td>< 600</td>
<td>40</td>
</tr>
<tr>
<td>Drilled Shafts</td>
<td>5000</td>
<td>< 600</td>
<td>40</td>
</tr>
</tbody>
</table>
Specific Real-World Examples

- Reduce cementitious content in paving mixtures (564 lbs/yd³ to 470 lbs/yd³)
- Increased use of SCMs
 - Fly ash, slag cement, natural pozzolans
- Use blended (ASTM C595) or performance specified (ASTM C1157) cements
- Always consider in-place recycling
What About Operations?

- Approximately 85% of the energy and emissions associated with pavements is incurred after the construction phase.
- Social impacts are sizable.
- Need to consider operational phase:
 - Traffic using the facility
 - Interaction of the pavement with the surrounding environment
Fuel Efficiency

- Pavement roughness impacts vehicle operating costs, especially fuel efficiency
 - Keep pavements smooth
- Small, but significant, improvement in fuel efficiency when vehicles are operating on a rigid concrete pavement
 - Still awaiting publication of some key reports
- Over a 30 to 50 year design life, this can be huge
Surface Reflectivity

- Concrete surfaces are highly reflective
 - Can be made more so with lighter cement or coatings
- High reflectivity helps mitigate the urban heat island (UHI) effect
 - Reduces energy use and smog
- Highly reflective pavement surfaces also require less artificial light at night
 - Less energy and improved safety
Surface Albedo and Urban Heat
Pervious Surfaces

Concrete pavement can be made pervious
- Significant economic, environmental, and social benefits
- Part of a livable community

Integrate with conventional mainline paving

Consider photocatalytic cement
Specific Real-World Examples

- Chicago is using concrete pavers made with TiO$_2$ surface to address UHI effect
 - Also microsurfacing asphalt pavement
- Significant increase in the use of pervious concrete
 - Local streets, alleyways, parking lanes, and parking lots
- Consider improved fuel efficiency?
Trust But Verify

- “Greenwashing” is rampant
- An unbiased, scientifically-based “toolkit” is needed to assess the sustainability of all pavements
 - A life cycle assessment (LCA) framework for pavements (in compliance with ISO14040) is being worked on by a number of groups
 - Assessment of social impacts is challenging
- Rating systems are available (Greenroads)
Life Cycle Assessment

- An LCA compares environmental impacts assignable to producing goods
 - Scientifically-based
- It accounts for the effects of “cascading technologies”
- Conducting an LCA infers that a fair, holistic assessment is done over all phases of a product’s existence
 - Establishing a framework is very important
System Input-Output Concept

- Raw materials (kg)
- Feedstock (kg)
- Energy (MJ, kWh)
- Products (kg)
- Co-products (kg, MJ)
- Waste (kg)
- Emissions to water and soil (kg)
- Emissions to air (kg)
Specific Real-World Examples

- Rigorously employ LCCA
- Elements of Greenroads are ready to use
 - Coordinate with developers
- Thumbnail environmental assessment using published data
 - PCA Report
- Process LCA can be conducted for large projects
In Closing: Opportunities Exist

- Sustainability is here to stay, being driven by multiple economic, environmental, and social factors
 - It has always existed, but often ignored
- Profound change is impacting our industry
 - The versatility of concrete will ensure it remains a material of choice
Exploit Win-Win-Win Scenarios

- In-place recycling
- Increased use of SCMs, blended cements, and performance specified cements
- Optimized mix designs
- Two-lift construction
- Design and construct livable communities featuring concrete pavement
 - Light in color, aesthetic, pervious, innovative
Track 13 Products

- A Briefing Document (delivered 08/09)
- A “Best Practices” training manual and implementation package for concrete pavement sustainability (initiated 1/10)
- A conference on sustainability of concrete pavements that addresses economic, environmental, and societal impacts
 - International Conference on Sustainable Concrete Pavements: Practices, Challenges, and Directions, Sacramento, CA. Sept. 15-17, 2010
Questions?