Municipal Specification Conflicts with Green Building and Sustainable Design

As Specifically Related to Concrete and Cement

Richard S. Szecsny, PhD. PE
Vice-President, New Product Development
Lattimore Materials Company

Spring 2010
Notice of Copyright

This document is STRICKLY CONFIDENTIAL and is intended for the specific use of Lattimore Materials Company and/or its duly designated representatives or customers. This document may contain information that constitutes trade secrets or is otherwise proprietary. Dissemination, distribution or copying of this communication to anyone other than Lattimore Materials Company and/or its duly designated representatives or customers is STRICLTY PROHIBITED.

No part of this work, covered by copyright, may be reproduced or copied in any form or by any means (graphic, electronic or mechanical, including photocopying, recording, recording taping, or information and retrieval systems) without the written permission of the author. All rights reserved, 2010 ©.
Disclaimer and Waiver of Liability

This document is for informational purposes only and is not to be construed as explicit engineering advice, or professional engineering services. This service is provided on the terms and understanding that the author(s) or companies represented by Lattimore Materials Company (herein as “LMC”) or author(s) makes no warranty, guarantee, or promise, express or implied, concerning the content or accuracy of the material herein and accessible via this service.

No person or business entity should rely on the sole contents of this document to make any decisions. LMC or author(s) or the companies that they represent are not responsible for the results of any actions taken on the basis of information in this service, nor for the actions of persons using this document, nor for any error in or omission contained in this document.

LMC or author(s) or any represented company expressly disclaims all and any liability and responsibility to any person in respect of anything, and of the consequences of anything, done or omitted to be done by any such person in reliance, whether wholly or partially, upon the whole or any part of the contents of this document.
Overview

- North Texas Market
- Municipal restrictions on cement
 - Dallas, Texas as an example
- Law of Unintended Consequences
Sustainable Design Philosophy

\[\text{Sustainability} = \frac{\text{Design Requirement}}{\text{Design Function}} \times \frac{\text{Time}}{\text{Sustainability}} \]

- **Design Requirement**
 - Specified level of performance necessary

- **Design Function**
 - Specified intent for use of the structure from the Owner
Sustainable Design Philosophy

Design Requirement = Performance
Sustainable Design Philosophy

\[\text{Sustainability} = \frac{\text{Performance} > \text{Function}}{\text{Time}} \]

- **Performance**
 - Expected result from the design as measured by a standard method

- **Function**
 - Intended use of structure or structural element
Design Philosophy

Prescription \cong Performance

- Generally accepted design approach
- Supported by Codes and Standards
- Don’t have to exercise judgment
- Perception that it minimizes liability
Design Philosophy

\[
Sustainability = \frac{\text{Prescription} > \text{Function}}{\text{Time}}
\]

- Is it possible to “prescribe” sustainability?
- Does a prescriptive approach create an inherent conflict?
- How do we resolve the conflict?

LMC

Lattimore Materials Company
North Texas Market Statistics

- **Consumes 16.0M yd³/yr (normally...)**
 - About 3.0 yds per capita

- **Requires about 4.0M tons of cement**

- **Additional 0.3M tons for precast, block, pipe, etc.**

- **Midlothian cement mills produce 5.8M tons per year**
 - Producing at maximum capacity

- **Importing 1.0M tons to supply demand**
Concrete Demographics

- Market divided into 3 categories
 - Residential, Commercial and Municipal

- City of Dallas has 1,200,000+ residents, 2006 census
 - About 3.6M yd3 of concrete
 \[\approx 913,680 \text{ tons of cement}\]
 - 1.44M yd3 of commercial (40%)
 - 1.26M yd3 of municipal (35%)
 \[\approx 379,008 \text{ tons of cement}\]
 - 0.9M yd3 of residential (25%)
Concrete Economics

• **Price per yard (yd3) driven by sack content**
 – Sack content is total cementitious material
 – Higher the sack content = higher concrete expense
 – Lower the sack content = lower concrete expense

• **More limited/specialty a source material…**
 – …the more expensive it becomes…
 – …the greater the concrete expense
 – Simple supply and demand economics
Cement as a Raw Material

- 1.0 ton of cement is responsible for:
 - 0.9 tons of CO$_2$
 - 1.7 to 4.0 lbs of NO$_x$

- Cement can be replaced by fly ash
 - Fly ash is a waste material from coal fired power plants
 - Product is landfilled otherwise
 - 1.0 lb of cement is replaced by 1.0 lb of fly ash
First Principles of the Reaction

Cementitious Reaction

\[C_3S + H \rightarrow CSH + CH \]

Cement + Water \(\rightarrow \) CSH + Lime

Pozzolanic Reaction

\[CH + S + H \rightarrow CSH \]

Lime + Pozz + Water \(\rightarrow \) CSH
Clean Air Initiative and progress?

- Demand for cement is higher than supply (normally…)
- Currently importing cement into North Texas
- Limiting the cement based on emissions to improve North Texas air quality?
It started with Dallas...

- City of Dallas
- City of Ft. Worth
 (has since amended...)
- City of Arlington
- City of Irving
- City of Plano

“...A cement kiln that has met the emission standard of 1.7 lb of NO_x per ton of clinker released into the atmosphere...”
Municipal Contradictions - Dallas

City of Dallas Specifications for Concrete, Section 5.8.1.1

<table>
<thead>
<tr>
<th>Class of Concrete</th>
<th>Min cement content per cu.yd.</th>
<th>Min. comp. Str. 28 day, psi</th>
<th>Max w/c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pounds</td>
<td>Sack</td>
<td></td>
</tr>
<tr>
<td>Machine finish</td>
<td>564</td>
<td>6.0</td>
<td>4000</td>
</tr>
<tr>
<td>Hand finish</td>
<td>611</td>
<td>6.5</td>
<td>4500</td>
</tr>
<tr>
<td>Sidewalks, curbs, median pavement</td>
<td>470</td>
<td>5.0</td>
<td>3000</td>
</tr>
</tbody>
</table>

Note: 1 sack = 94.0 lbs of cementitious material
Municipal Contradictions - Dallas

City of Dallas Structural Concrete specifications, Section 7.4.5.b.

<table>
<thead>
<tr>
<th>Class of Concrete</th>
<th>Min cement contents per cu.yd.</th>
<th>Min. Comp. Str. 28 day, psi</th>
<th>Max w/c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pounds</td>
<td>Sack</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>470</td>
<td>5.0</td>
<td>3000</td>
</tr>
<tr>
<td>B</td>
<td>376</td>
<td>4.0</td>
<td>2000</td>
</tr>
<tr>
<td>C</td>
<td>564</td>
<td>6.0</td>
<td>3600</td>
</tr>
<tr>
<td>D</td>
<td>282</td>
<td>3.0</td>
<td>1500</td>
</tr>
<tr>
<td>E</td>
<td>564</td>
<td>6.0</td>
<td>4000</td>
</tr>
<tr>
<td>F</td>
<td>611</td>
<td>6.5</td>
<td>1500</td>
</tr>
<tr>
<td>H</td>
<td>611</td>
<td>6.5</td>
<td>As specified</td>
</tr>
</tbody>
</table>

Note: 1 sack = 94.0 lbs of cementitious material
City of Dallas Restrictions

• **Prohibits the use of fly ash**
 – Section 5.8.1.1 of the October 1996 City of Dallas Public Works, pg 38, it states, “Fly Ash Shall not be used in hand finish concrete”

• **Restricts the use of fly ash**
 – Section 2.2.2.d, “…the maximum cement reduction shall not exceed 20% by weight of cement…”

• **Replaces at a 1.0:1.25 ratio?!?!**
 – Section 2.2.2.d, “…fly ash replacement shall be 1.25 pounds, per 1.0 pound of Portland cement…”
City of Dallas Example

- Paving with 4500 psi requirement
- Hand paving
- City of Dallas specifications (5.8.1.1) state:

<table>
<thead>
<tr>
<th>Class of Concrete</th>
<th>Min. cement content per cu.yd.</th>
<th>Min. comp. Str. 28 day, psi</th>
<th>Max w/c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pounds</td>
<td>Sack</td>
<td></td>
</tr>
<tr>
<td>Machine finish</td>
<td>564</td>
<td>6.0</td>
<td>4000</td>
</tr>
<tr>
<td>Hand finish</td>
<td>611</td>
<td>6.5</td>
<td>4500</td>
</tr>
<tr>
<td>Sidewalks, curbs, median pavement</td>
<td>470</td>
<td>5.0</td>
<td>3000</td>
</tr>
</tbody>
</table>

LMC Lattimore Materials Company
City of Dallas Comparison

<table>
<thead>
<tr>
<th></th>
<th>COD (no ash)</th>
<th>Industry</th>
<th>COD (w/ash)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Cement Content =</td>
<td>611</td>
<td>564</td>
<td>611</td>
</tr>
<tr>
<td>Sack Content =</td>
<td>6.5</td>
<td>6.0</td>
<td>6.5</td>
</tr>
<tr>
<td>Cement to Ash replacement =</td>
<td>1.0</td>
<td>1.0</td>
<td>1.25</td>
</tr>
<tr>
<td>Max replacement =</td>
<td>0%</td>
<td>25%</td>
<td>20%</td>
</tr>
<tr>
<td>Cement wt =</td>
<td>611</td>
<td>423</td>
<td>509</td>
</tr>
<tr>
<td>Ash wt =</td>
<td>0</td>
<td>141</td>
<td>127</td>
</tr>
<tr>
<td>New Cement content =</td>
<td>611</td>
<td>564</td>
<td>636</td>
</tr>
<tr>
<td>New Sack Content =</td>
<td>6.5</td>
<td>6.0</td>
<td>6.8</td>
</tr>
<tr>
<td>NO\textsubscript{x} per yard (lbs.) =</td>
<td>0.92</td>
<td>0.63</td>
<td>0.76</td>
</tr>
<tr>
<td>CO\textsubscript{2} per yard (tons) =</td>
<td>0.27</td>
<td>0.19</td>
<td>0.23</td>
</tr>
<tr>
<td>$ per yard =</td>
<td>$119.50</td>
<td>$109.03</td>
<td>$121.00</td>
</tr>
</tbody>
</table>

Lattimore Materials Company
City of Dallas Comparison

<table>
<thead>
<tr>
<th></th>
<th>COD- No Ash</th>
<th>Industry</th>
<th>COD- Ash</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO\textsubscript{x} per yard (lbs.)</td>
<td>0.92</td>
<td>0.69</td>
<td>0.76</td>
</tr>
<tr>
<td>CO\textsubscript{2} per yard (tons)</td>
<td>0.27</td>
<td>0.21</td>
<td>0.23</td>
</tr>
<tr>
<td>$ per yard</td>
<td>$119.50</td>
<td>$109.03</td>
<td>$121.00</td>
</tr>
</tbody>
</table>

LMC

Lattimore Materials Company
City of Dallas Results

<table>
<thead>
<tr>
<th>Item</th>
<th>No fly ash replacement</th>
<th>Fly Ash replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO\textsubscript{x} per cubic yard</td>
<td>33% increase</td>
<td>10% increase</td>
</tr>
<tr>
<td>CO\textsubscript{2} per cubic yard</td>
<td>29% increase</td>
<td>10% increase</td>
</tr>
<tr>
<td>Cost</td>
<td>10% increase</td>
<td>11% increase</td>
</tr>
</tbody>
</table>

Note: As compared to an industry standard design

LMC
Lattimore Materials Company
City of Dallas Conclusions

- COD concrete specifications prohibit the supply of environmentally conscious concrete
- Counter intuitive to actual concrete production
- Contradict standard industry practice
- Conflict with green building and sustainable design philosophy
City of Dallas (and others) Action Steps

- Remove minimum cement content
- Remove restrictions on maximum fly ash
- Remove 1:1.25 replacement of cement and fly ash
- Focus on performance aspects of concrete
 - Compressive strength, shrinkage, permeability, etc
 - Results that can be measured by standard test methods
- Don’t focus on prescriptive elements
Actual and Unintended Consequences

- When supply is limited, but demand is high…
 - …the market responds…
- Concrete prices for municipal has risen 10%
- Concrete production becomes limited
- Job pacing decreases
- Costs escalate
- Did the air quality really change?
Actual and Unintended Consequences

• Lawsuit filed in 2008...
 – Ash Grove Texas, L.P. v. City of Dallas et al, Cause No. 3:08-cv-02114, U.S. District Court, Northern District of Texas, Dallas Division.

• Legal arguments
 – Regulation is arbitrary and capricious
 – Violation of public purchasing laws
 – Preemptive regulation by the municipality
Legal Argument – Arbitrary and Capricious

• Municipality must:
 – Supply a satisfactory and rational analysis
 – Show a rational connection between the facts found and the decision rendered
 – Not rely on improper factors
 – Fails to consider important aspects of the problem
City of Dallas Specifications for Concrete, Section 5.8.1.1

<table>
<thead>
<tr>
<th>Class of Concrete</th>
<th>Min cement content per cu.yd.</th>
<th>Min. comp. Str. 28 day, psi</th>
<th>Max w/c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pounds</td>
<td>Sack</td>
<td></td>
</tr>
<tr>
<td>Machine finish</td>
<td>564</td>
<td>6.0</td>
<td>4000</td>
</tr>
<tr>
<td>Hand finish</td>
<td>611</td>
<td>6.5</td>
<td>4500</td>
</tr>
<tr>
<td>Sidewalks, curbs, median pavement</td>
<td>470</td>
<td>5.0</td>
<td>3000</td>
</tr>
</tbody>
</table>
Arbitrary and Capricious

City of Dallas Structural Concrete specifications, Section 7.4.5.b.

<table>
<thead>
<tr>
<th>Class of Concrete</th>
<th>Min cement contents per cu.yd.</th>
<th>Min. Comp. Str. 28 day, psi</th>
<th>Max w/c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pounds</td>
<td>Sack</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>470</td>
<td>5.0</td>
<td>3000</td>
</tr>
<tr>
<td>B</td>
<td>376</td>
<td>4.0</td>
<td>2000</td>
</tr>
<tr>
<td>C</td>
<td>564</td>
<td>6.0</td>
<td>3600</td>
</tr>
<tr>
<td>D</td>
<td>282</td>
<td>3.0</td>
<td>1500</td>
</tr>
<tr>
<td>E</td>
<td>564</td>
<td>6.0</td>
<td>4000</td>
</tr>
<tr>
<td>F</td>
<td>611</td>
<td>6.5</td>
<td>1500</td>
</tr>
<tr>
<td>H</td>
<td>611</td>
<td>6.5</td>
<td>As specified</td>
</tr>
</tbody>
</table>

Note: 1 sack = 94.0 lbs of cementitious material
Arbitrary and Capricious

- **Prohibits the use of fly ash**
 - Section 5.8.1.1 of the October 1996 City of Dallas Public Works, pg 38, it states, “Fly Ash Shall not be used in hand finish concrete”

- **Restricts the use of fly ash**
 - Section 2.2.2.d, “…the maximum cement reduction shall not exceed 20% by weight of cement…”

- **Replaces at a 1.0:1.25 ratio?!?!**
 - Section 2.2.2.d, “…fly ash replacement shall be 1.25 pounds, per 1.0 pound of Portland cement…”
Legal Argument – Public Purchasing Laws

• If spec has nonfunctional characteristic it violates competitive bidding statute
 – Resolution based entirely on desire to improve air quality and not on a desire to purchase better cement.

• Do not allow specs that are unrelated to the quality or quantity of the goods or services or that otherwise restrict competition.

• Contracts must be awarded to the lowest responsible bidder or to the bidder who provides the goods or services at the best value for the municipality.
Legal Argument – Preemptive regulation

- Attempting to regulate indirectly, what it may not regulate directly
 - TCEQ regulates air quality emissions in State of Texas

- Texas Clean Air Act also prohibits the City’s attempts to regulate around the TCEQ
 - TCEQ has a detailed regulatory scheme and permitted NO\textsubscript{x} emissions on a facility-by-facility basis.

- Could result in about 3000 or more regulators of air quality within the state.
Final Thought

- Environmental Choice:
 - 8.0M tons of cement produce 16.0M yd³ of concrete
 - 8.0M tons of cement produce 18.0M yd³ of concrete

- Which one is better for air quality?

- Otherwise…
 - Limit the choices for cement
 - …where demand outpaces supply
 - …increase the cost for municipal concrete ($10 yd³)
 - …and have zero impact on air quality
 - …headed to a courtroom near you (who pays for defense?)
Questions and Further Information

Richard S. Szeczy, PhD, PE
Vice-President
New Product Development and Risk Management

Lattimore Materials Company
1700 Redbud, Suite 200
McKinney, Texas 75069
214-202-1379 (cell)
972-221-4646 (ofc)
szeczy1@lmctx.com
www.lattimorematerials.com
References and Notes

2. Engineering News Record, May 5, 2008, pg. 24. Price listing are for 3000 psi ($92.30), 4000 psi ($94.32), and 5000psi ($96.27) concrete. The Hand Finish concrete is specified as a 4500 psi design. The price per yard of concrete is taken as the average between the 4000 psi and 5000 psi values ($95.30). The value is a ratio between the original design at 6.5 sack and the increase to 6.8 sack and calculated as a simple linear increase, which would be standard industry practice.

3. “White Paper on City of Dallas Concrete Specifications and NO\textsubscript{x} and CO\textsubscript{2} Emissions”, Richard S. Szecsy, PhD, PE, 4807 Arbor Glen, McKinney, Texas, szecsy1@sbcglobal.net, 214-202-1379, October 2007

5. These calculations are based on an average overall sack content of 5.4 (507.6 lb/yd) and an average municipal sack content of 6.4 (601.6 lb./yd). These calculations do not take into account a fly ash replacement.