NRMCA Concrete Durability Course
ONLINE COURSE | JUNE 15 – 22, 2020

Course Information
Shawnita Dickens
Phone: 240-485-1154
Email: sdickens@nrmca.org

Registration Information
Mason Jean
Phone: 703-706-4852
Email: mjean@nrmca.org

Course follows all federal anti-trust guidelines.

This course is part of NRMCA’s Seminars, Training and Education Programs, STEPS®, and earns you credit towards becoming a CCPf, a Certified Concrete Professional. The highest professional designation in the industry.

Why attend?
The course will cover the fundamental mechanisms that impact durability of concrete. Recognize symptoms and learn about methods to evaluate the deterioration of concrete; understand causes of durability problems and methods to prevent them; test methods for durability and their limitations; and code and specification criteria for durable concrete structures.
Topics will cover the concrete microstructure, cracking, corrosion mechanisms, freeze-thaw resistance, sulfate resistance, alkali aggregate reactions (AAR), and other durability-related distress.
The course will be taught by instructors who are at the forefront of current research and diagnosis of concrete durability.

Course Instructors

Michael Thomas, Ph.D., P.Eng.
Professor of Civil Engineering
University of New Brunswick
17 Dineen Drive
Fredericton, NB, E3B 5A3 (Canada)
Phone: 506-458-7789
Email: mdat@unb.ca

Kevin J. Folliard, Ph.D.
Professor
Dept. of Civil, Arch, and Env Eng.
The University of Texas at Austin
Austin, TX 78712
Phone: 512-232-3591
E-mail: folliard@mail.utexas.edu

Colin Lobo, Ph.D. P.E.
Exec VP, Engineering
NRMCA
66 Canal Center Plaza, Ste 250
Alexandria, VA 22314
Phone: 703-706-4860
E-mail: clobo@nrmca.org

The online course will be offered in webinar sessions and will include handout materials and review questions for each session. The sessions will be recorded for attendees who miss the live session. Course attendees will work in groups on a specification case study using ConcreteWorks software.
ONLINE COURSE OUTLINE (Tentative – subject to change)

<table>
<thead>
<tr>
<th>Session</th>
<th>Date</th>
<th>Time</th>
<th>Topics</th>
<th>Instructor</th>
</tr>
</thead>
</table>
| 1 – 2 hr| Monday June 15 | 10 a.m. – 12 p.m. EDT | Introduction
Overview of Concrete Durability
Nature of Concrete I:
Hydration, microstructure & permeability | Michael Thomas |
| 2 – 2 hr| Monday June 15 | 1 p.m. – 3 p.m. EDT | Nature of Concrete II:
Shrinkage & cracking | Kevin Folliard |
| 3 – 2 hr| Tuesday June 16 | 10 a.m. – 12 p.m. EDT | Chlorides, Carbonation & Corrosion
Corrosion Protection | Michael Thomas |
| 4 – 2 hr| Tuesday June 16 | 1 p.m. – 3 p.m. EDT | Alkali-Aggregate Reactions | Michael Thomas |
| 5 – 2 hr| Wednesday June 17 | 10 a.m. – 12 p.m. EDT | Sulfate Attack and Related Issues | Kevin Folliard |
| 6 – 2 hr| Wednesday June 17 | 1 p.m. – 3 p.m. EDT | Overview of ConcreteWorks
Case Study Assignment | Kevin Folliard |
| 7 – 2 hr| Thursday June 18 | 10 a.m. – 12 p.m. EDT | Code Requirements and Specifications
Performance-based alternatives | Colin Lobo |
| 8 – 2 hr| Friday June 19 | 10 a.m. – 12 p.m. EDT | Freeze-Thaw & Deicer Salt Scaling
Other Forms of Deterioration | Michael Thomas |
| 9 – 2 hr| Friday June 19 | 1 p.m. – 3 p.m. EDT | Group discussion on ConcreteWorks and Assignment
Wrap up and Question and Answer Session | Kevin Folliard
All Instructors |
| Exam | Monday June 22 | 1 p.m. – 3 p.m. EDT | | |