CIP 1—Dusting Concrete Surfaces

WHAT is Dusting

Formation of loose powder resulting from disintegration of surface of hardened concrete is called dusting or chalking. The characteristics of such surfaces are:

a. They powder under any kind of traffic
b. They can be easily scratched with a nail or even by sweeping.

d.jpg

WHY Do Concrete Floors Dust

A concrete floor dusts under traffic because the wearing surface is weak. This weakness can be caused by:

a. Any finishing operation performed while bleed water is on the surface or before the concrete has finished bleeding. Working this bleed water back into the top ¼-inch [6 mm] of the slab produces a very high water-cement ratio and, therefore, a low strength surface layer.

b. Poor finishing practices such as broadcasting dry cement to speed up finishing or sprinkling water to the surface while finishing.

c. Floating and/or troweling operations following the condensation of moisture from warm humid air on cold concrete. In cold weather concrete sets slowly, in particular, cold concrete in basement floors. If the humidity is relatively high, water will condense on the freshly placed concrete, which, if troweled into the surface, will cause dusting.

d. Inadequate ventilation in enclosed spaces. Carbon dioxide from open salamanders, gasoline engines or generators, power buggies or mixer engines may cause a chemical reaction known as carbonation, which greatly reduces the strength and hardness of the concrete surface.

e. Insufficient curing. This omission often results in a soft surface skin, which will easily dust under foot traffic.

f. Inadequate protection of freshly placed concrete from rain, snow or drying winds. Allowing the concrete surface to freeze will weaken the surface and result in dusting.

HOW to Prevent Dusting

a. Concrete with the lowest water content with an adequate slump for placing and finishing will result in a strong, durable, and wear-resistant surface. In general, use concrete with a moderate slump not exceeding 5 inches [125 mm]. Concrete with a higher slump may be used provided the mixture is designed to produce the required strength without excessive bleeding and/or segregation. Water-reducing admixtures are typically used to increase slump while maintaining a low water content in the mixture. This is particularly important in cold weather when delayed set results in prolonged bleeding.

b. NEVER sprinkle or trowel dry cement into the surface of plastic concrete to absorb bleed water. Remove bleed water by dragging a garden hose across the surface. Excessive bleeding of concrete can be reduced by using air-entrained concrete, by modifying mix proportions, or by accelerating the setting time.

c. DO NOT perform any finishing operations with water present on the surface or while the concrete continues to bleed. Initial screeding must be promptly followed by bull floating. Delaying bull floating operations can cause bleed water to be worked into surface layer. Do not use a jitterbug, as it tends to bring excess
How to Repair Dusting

1. Use moderate slump concrete not exceeding 5 inches [125 mm].
2. Do not start finishing operations while the concrete is bleeding.
3. Do not broadcast cement or sprinkle water on concrete prior to or during finishing operations.
4. Ensure that there is adequate venting of exhaust gases from gas-fired heaters in enclosed spaces.
5. Use adequate curing measures to retain moisture in concrete for the first 3 to 7 days and protect it from the environment, especially freezing conditions.

References

1. Guide for Concrete Floor and Slab Construction, ACI 302.1R. American Concrete Institute, Farmington Hills, MI.
2. Slabs on Grade, Concrete Craftsman Series CCS-1, American Concrete Institute, Farmington Hills, MI.
3. Concrete Slab Surface Defects: Causes, Prevention, Repair, IS177, Portland Cement Association, Skokie, IL.
5. Residential Concrete, National Association of Home Builders, Washington, DC.